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Impact of Soil Texture on Accuracy of Saturated Soil Water Flux
Direction Measurement Through Ratio Method

LU Fuyun' WU Yang® YANG Xijian' WANG Wei'
(1. College of Engineering, China Agricultural University, Beijing 100083, China
2. Institute of Forestry and Pomology, Beijing Academy of Agriculture and Foresiry Sciences, Beijing 100093, China)

Abstract; The direction of soil water flux is a key parameter in saturated soil flow fields. Soil texture
significantly affects pore connectivity, which introduces randomness into the direction of water flow.
Therefore, measuring water flux direction requires consideration of an appropriate spatial scale. The
direction of saturated soil water flux can be determined by combining the ratio method with the principle
of vector composition. Based on the above requirements, a penta-needle heat pulse probe (PHPP) was
designed to measure water flux magnitude in any two mutually perpendicular directions within a plane and
to determine flux direction through vector composition. Experiments were conducted in saturated sand,
sandy loam, and silt loam, with each soil type repacked three times. The experimental results showed
that the accuracy of this method in measuring soil water flux direction was significantly influenced by soil
texture. For fluxes greater than 4 cm/h, the mean absolute percentage errors ( MAPE ) of angle
measurements in sand, sandy loam, and silt loam were 4.96% , 6. 18% , and 15.06% , respectively.
This indicated that the accuracy of water flux direction measurements was decreased with finer soil
texture. Compared with fluxes below 4 em/h, the standard deviations of angle measurements in sand,
sandy loam, and silt loam were decreased by 10.40°, 6.65° and 6. 71°, respectively, for fluxes above

4 cm/h. This indicated that the accuracy of water flux direction measurements was improved with the
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increase of flux. Stable water flux angle measurements, with absolute errors below 7.5°, were achieved

in sand at fluxes above 6 cm/h and in sandy loam above 3 ¢cm/h, but not in silt loam. These findings

suggested that pore connectivity in packed soils varied with texture under different fluxes and hydraulic

gradients, thereby affecting measurement precision. Additionally, the geometric relationship between soil

particle size and probe spacing affected the measurement accuracy of the ratio method. Optimizing the

probe spacing of the PHPP based on soil particle size distribution may improve the reliability of water flux

angle measurements by using the vector composition method. These findings can contribute to the

development and practical application of heat pulse technology.

Key words: soil water flux direction; soil texture; ratio method; penta-needle heat pulse probe; heat

pulse technique
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Tab.1 Particle-size distribution, bulk density, and

saturated hydraulic conductivity for test soils

o AR % T F KR
E - TS
0.002 ~ 0~ K,/
>0. 050 mm (g-cm"%)
0.050 mm  0.002 mm (em+h™")
w4t 95. 60 4.40 0 1.46 34. 64
i+ 51.31 47.06 1.63 1.39 3.18
Wi+ 25.16 69.72 5.12 1.33 2.70
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Tab.2 Measured thermal properties of test soils

JoT a/(m*-s™ 1) C,/(MI'm K'Yy A/(Wem '"-K™") r,/mm r,/mm ry/mm ry/mm

Wt (8.01 £0.018) x1077 2.47 £0.034 1.98 +0. 054 3.98 £0.058 4.09 +£0.094 4.08 +0.028 4.13 £0.074

i+ (6.85+0.033) x 107 2.77 £0.016 1.90 £0. 044 4.24 +0.024 4.13 £0. 050 4.07 £0. 066 4.16 +0. 084

FriE+ (5.77 £0.026) x 1077 2.95 +£0.023 1.70 £0. 062 4.02 £0.092 4.15 £0.058 4.07 £0.082 3.92 £0. 060
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