土壤速效氮磷钾自动检测系统设计与试验
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2023YFD2001001、2023YFD2001001-1)和湖北省农业关键核心技术攻关项目(HBNYHXGG2023-2)


Design and Experiment of Automatic Detection System for Soil Available Nitrogen, Phosphorus and Potassium
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统土壤速效氮磷钾含量检测效率低、自动化程度不足,车载式检测设备在复杂农田环境中路径规划与跟踪性能受限的问题,本研究构建了无人化作业平台赋能的大田土壤速效氮磷钾自动检测系统。集成北斗定位与四轮驱动转向平台,优选传感器检测模型,设计分级-适配式测肥点遍历路径规划方法及遗传算法(Genetic algorithm,GA)优化的线性二次调节器(Linear quadratic regulator,LQR)路径跟踪控制算法,构建云-端架构的自主测肥系统。为实现土壤肥力指标的原位、快速检测,经4种机器学习模型对比,优选随机森林(Random forest,RF)预测模型处理传感器数据,对速效氮磷钾预测相对误差分别小于16.44%、19.26%和13.91%,较传感器未建模的直接测量精度平均提升49.46%。为精准表征田块尺度肥力指标空间分布,通过量化不同采样密度的克里斯琴森均匀度系数(Christiansen uniformity coefficient,CUC)确定最优检测点间距。针对平坦无障、含大障碍物及含小障碍物田间环境,分别设计梳式(Comb path,CP)、梳式跨行(Comb cross-row path,CCP)及梳式-五阶贝塞尔(Comb fifth-order Bézier path,CFBP)3种检测点连续遍历路径规划方案。仿真试验结果表明,GA-LQR控制器使平台路径跟踪精度平均提高24.32%,最大绝对横向偏距和航向偏角分别为1.71cm和1.69°。田间试验结果表明,直线路径跟踪下,GA-LQR相较传统LQR算法最大绝对横向偏距、最大绝对航向偏角、检测点平均停车绝对值误差及全检测流程耗时分别减小15.62%、19.59%、20.79%和13.43%;曲线路径跟踪下对应指标减小19.28%、27.34%、22.94%和15.76%。同时,优化算法使单位公顷检测时长缩短927s,单点检测流程减少6.28s,定位检测准确性平均提高14.26%。研究结果可为土壤速效氮磷钾含量信息获取的自主化、信息化和智能化提供参考。

    Abstract:

    Aiming to address the issues of low efficiency and insufficient automation in traditional soil available nitrogen, phosphorus and potassium (NPK) content detection, as well as the limited path planning and tracking performance of vehicle-mounted detection equipment in complex farmland environments, an autonomous detection system for soil available NPK in field empowered by an unmanned operation platform was established. It integrated Beidou positioning and a four-wheel drive steering platform, optimized sensor detection models, designed a hierarchical-adaptive traversal path planning method for fertilizer-measuring points and a path tracking control algorithm based on genetic algorithm (GA)-optimized linear quadratic regulator (LQR), and built an autonomous fertilizer detection system with cloud-edge architecture. For in-situ, rapid detection of soil fertility indicators, random forest (RF) prediction mode was selected as the optimal algorithm after comparing four machine learning models. Its relative prediction errors for available N, P and K were below 16.44%, 19.26% and 13.91%, respectively, with an average 49.46% accuracy improvement over the direct measurement accuracy of sensors without prior modeling. To accurately characterize the spatial distribution of field-scale fertility indicators, the optimal detection point spacing was determined by quantifying the Christiansen uniformity coefficient (CUC) across different sampling densities;three continuous traversal path planning schemes—comb path (CP), comb cross-row path (CCP), and comb fifth-order Bézier path (CFBP)—were designed for flat obstacle-free, large-obstacle, and small-obstacle farmland environments, respectively. Simulation tests showed that the GA-LQR controller improved the platform’s path tracking accuracy by an average of 24.32%, with maximum absolute lateral deviation and heading angle of 1.71cm and 1.69°, respectively. Field tests demonstrated that under straight path tracking, the GA-LQR algorithm reduced the maximum absolute lateral deviation, maximum absolute heading angle, average absolute parking error at detection points, and total detection time by 15.62%, 19.59%, 20.79%, and 13.43%, respectively, compared with the conventional LQR algorithm;under curved path tracking, the corresponding indicators were decreased by 19.28%, 27.34%, 22.94%, and 15.76%. Additionally, the optimized algorithm shortened the detection time per hectare by 927s, reduced the single-point detection process by 6.28s, and improved the positioning and detection accuracy by an average of 14.26%. The research result can provide a reference for the autonomy, informatization, and intelligentization of soil available NPK content information acquisition.

    参考文献
    相似文献
    引证文献
引用本文

姚冶桐,王军,董万静,田屹维,张扬,丁幼春.土壤速效氮磷钾自动检测系统设计与试验[J].农业机械学报,2026,57(4):355-368,398. YAO Yetong, WANG Jun, DONG Wanjing, TIAN Yiwei, ZHANG Yang, DING Youchun. Design and Experiment of Automatic Detection System for Soil Available Nitrogen, Phosphorus and Potassium[J]. Transactions of the Chinese Society for Agricultural Machinery,2026,57(4):355-368,398.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-15
  • 出版日期:
文章二维码