基于地下无线传播信号的土壤含水率预测方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广州市重点研发计划项目(2024B03J1355)、国家自然科学基金项目(32271996、32572183)、财政部和农业农村部:现代农业产业技术体系建设专项资金项目(CARS-31-11)和中央级公益性科研院所基本科研业务费项目(CATASCXTD202309)


Soil Moisture Content Prediction Method Based on Underground Wireless Signal Propagation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    及时准确地获取土壤水分信息对全面掌握土壤含水率、提高用水效率、节约宝贵的水资源具有重要意义。当前,土壤水分信息远程采集需同时使用土壤水分传感器及无线传输模块,但局限于离散点的数据获取,不能实现对区域尺度全面评估。而且土壤水分传感器成本较高,往往无法进行批量部署。本文利用地下无线信号受土壤水分显著影响的工作特性及其无线传输通信优势,提出了一种低成本的基于地下无线传播信号对区域范围实现土壤含水率预测方法。基于LoRa技术和泛化能力强的快速机器学习方法实现,首先设计并制作了可用于地下环境工作的LoRa无线地下传感器网络,实现无线信号接收信号强度(Received signal strength indicator,RSSI)、信噪比以及土壤温度等数据的远程采集。接着,利用采集的数据,提出了基于多源数据的核极限学习机(Kernel extreme learning machine, KELM)模型和粒子群参数寻优计算土壤含水率,解决了土壤含水率与多源数据间的非线性关系复杂度高、大规模数据难以拟合、训练难收敛问题;试验结果表明,提出的基于粒子群参数寻优的KELM模型相对于极限学习机(Extreme learning machine,ELM)、支持向量机(Support vector regression,SVR)、长短记忆神经网络(Long short-term memory,LSTM)具有更高的土壤含水率反演精度。在训练集上,KELM模型平均绝对误差(MAE)为 0.76%,均方根误差(RMSE)为1.02%,在测试集上,MAE为0.72%,RMSE为1.07%,能更准确地得到土壤含水率。提出的方法可在不依赖密集布设土壤水分传感器情况下实现土壤含水率有效预测和远程采集,为远程土壤水分区域探测提供了更低成本的解决方案。

    Abstract:

    Timely and accurate acquisition of soil moisture information is essential for comprehensively understanding soil water content, improving water use efficiency, and conserving valuable water resources. At present, remote collection of soil moisture data typically requires both soil moisture sensors and wireless transmission modules. However, these approaches are limited to discrete point measurements and cannot achieve comprehensive regional assessment. Moreover, the high cost of soil moisture sensors restricts large-scale deployment. A low-cost method for predicting soil water content over an area was proposed, utilizing the working characteristics of underground wireless signal propagation which was strongly influenced by soil moisture, and its advantages in wireless communication. Based on LoRa technology and a fast machine learning approach with strong generalization capability, a LoRa-based underground wireless sensor network was designed and developed for underground environments to remotely collect data such as received signal strength indicator (RSSI), signal-to-noise ratio (SNR), and soil temperature. Using the collected data, a kernel extreme learning machine (KELM) model optimized by particle swarm optimization (PSO) was proposed to estimate soil water content, addressing the challenges of strong nonlinearity, poor fitting, and low convergence in large-scale data modeling. Experimental results showed that the proposed PSO-optimized KELM model achieved higher prediction accuracy than the extreme learning machine (ELM), support vector regression (SVR), and long short-term memory (LSTM) models. In the training dataset, the KELM model achieved a mean absolute error (MAE) of 0.76% and a root mean square error (RMSE) of 1.02%, while in the testing dataset, the MAE and RMSE were 0.72% and 1.07%, respectively. The proposed method can achieve effective prediction and remote acquisition of soil moisture content without relying on the dense deployment of soil moisture sensors, providing a low-cost solution for large-area soil moisture detection.

    参考文献
    相似文献
    引证文献
引用本文

徐兴,刘国杰,李碧芳,段洁利,杨洲,付函,金莫辉.基于地下无线传播信号的土壤含水率预测方法[J].农业机械学报,2026,57(4):347-354. XU Xing, LIU Guojie, LI Bifang, DUAN Jieli, YANG Zhou, FU Han, JIN Mohui. Soil Moisture Content Prediction Method Based on Underground Wireless Signal Propagation[J]. Transactions of the Chinese Society for Agricultural Machinery,2026,57(4):347-354.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-08-16
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-15
  • 出版日期:
文章二维码