基于低成本电子耳标的母猪发情自动预测方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

浙江省重点研发计划项目(2021C02007)和嘉兴市公益性研究计划项目(2024AD10046)


Automatic Prediction Method for Sow Estrus Based on Low‑cost Electronic Ear Tags
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对母猪发情自动化检测成本高、推广难的问题,提出了一种基于改进遗传算法(Genetic algorithm, GA)优化轻量级梯度提升机算法(Light gradient boosting machine, LightGBM)对母猪发情进行预测的模型。模型利用低成本电子耳标实时采集母猪耳温数据,并提出小时平均体温重采样策略。实验结果表明,该策略可显著降低过拟合风险。针对传统GA收敛慢、易陷入局部最优的问题,设计了“强制子代迭代”(Forced offspring iteration, FOI)机制进行改进,在保证全局搜索能力的同时提升算法收敛效率。基于浙江华腾牧业有限公司311头母猪的实测数据集,FOI-GA优化LightGBM的模型FOI-GA-LightGBM在验证集上准确率达到83.91%,AUC值为0.8390,性能显著优于其他模型。

    Abstract:

    Using ear temperature instead of body temperature to predict and analyze the estrus of sows. To address the issues of high cost and limited scalability in the automated detection of sow estrus, a prediction model (denoted as GA-LightGBM) was proposed based on the improved genetic algorithm (GA) optimizing the light gradient boosting machine (LightGBM). Compared with infrared cameras and infrared imaging equipment, low-cost and low-power electronic ear tags were used to collect real-time ear temperature data from sows, and an hourly average temperature resampling strategy was innovatively proposed. Comparative experiments showed that this strategy significantly reduced the risk of overfitting. To overcome the problems of slow convergence speed and falling into local optima in traditional genetic algorithms, a forced offspring iteration (FOI) mechanism was designed to improve the algorithm, enhancing the convergence efficiency while maintaining the global search capability. In experiments, a LightGBM model optimized by the particle swarm optimization (PSO) (denoted as PSO-LightGBM) was introduced for comparison. After verification using a dataset containing 311 sows provided by Zhejiang Huateng Animal Husbandry Co., Ltd., the improved GA-optimized LightGBM model (denoted as FOI-GA-LightGBM) achieved an accuracy of 83.91% and an AUC of 0.8390 on the test set, significantly outperforming the GA-LightGBM and PSO-LightGBM models. At the same time, FOI-GA-LightGBM was also compared with random forest (RF) and support vector machine (SVM) in terms of performance. The overall performance of FOI-GA-LightGBM was superior to RF and SVM.

    参考文献
    相似文献
    引证文献
引用本文

桑高丽,殷亚鹏,高开富,万亮,姚雪飞,罗朝飞.基于低成本电子耳标的母猪发情自动预测方法[J].农业机械学报,2026,57(4):339-346. SANG Gaoli, YIN Yapeng, GAO Kaifu, WAN Liang, YAO Xuefei, LUO Chaofei. Automatic Prediction Method for Sow Estrus Based on Low‑cost Electronic Ear Tags[J]. Transactions of the Chinese Society for Agricultural Machinery,2026,57(4):339-346.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-01
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-15
  • 出版日期:
文章二维码