基于MSCS-YOLO的非结构化环境中草莓成熟度识别
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2024YFD2001005-04)、河北省级一流本科专业-物联网工程项目(冀教高函2024202427号)、河北省级一流本科立项建设课程-嵌入式系统与设计项目(冀教高函2020202025号)和河北东方学院校级科研项目(XJYB2025069)


Strawberry Maturity Recognition in Unstructured Environments Based on MSCS-YOLO
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对草莓个体较小、个体间遮挡严重的问题,提出了一种基于MSCS-YOLO的非结构化环境中草莓成熟度识别方法。在YOLO v8n模型的Neck部分引入多尺度扩展注意力机制(Multi-scale dilated attention,MSDA),扩大模型的感受野,解决草莓果实较小、特征易被忽略的问题。同时,利用改进的C2f-Triplet attention结构替换Neck部分的C2f结构,从3个维度更全面地捕捉草莓图像的信息,增强模型在果实遮挡情况下的目标识别能力。将改进的SAHead检测头嵌入到YOLO v8n模型,提升模型在非结构化环境中对不同成熟度草莓的识别精度。试验结果表明,MSCS-YOLO模型在成熟、中等成熟及未成熟3类草莓识别的任务中,平均精度均值达到94.22%,较YOLO v8n和RTDETR-L模型分别提高1.38、5.42个百分点;对成熟和中等成熟草莓识别平均精度分别达到96.35%和92.00%,较YOLO v8n模型分别高0.82、3.66个百分点。MSCS-YOLO模型在各种光照条件下(包括夜晚、晴天、直射阳光和光线照射)都展现了更佳的识别表现和更高的准确性。此外,改进模型内存占用量为6.42MB,相较于YOLO v7-tiny和YOLO v9c模型分别减少45.22%和86.93%,在保持与YOLO v8n相近模型体积的同时,实现了精度与效率的协同优化。因此,MSCS-YOLO模型在资源有限的环境中更具部署和应用的优势,为后期对草莓成熟度的实际应用提供了可靠的技术支持。

    Abstract:

    Aiming to address the problems of small strawberry individuals and serious inter-individual occlusion, a strawberry ripeness detection method was proposed based on MSCS-YOLO in an unstructured environment. The method introduced the multi-scale dilated attention (MSDA) mechanism in the Neck part of the YOLO v8n model, which enlarged the sensory field of the model and solved the problem of small strawberry fruits and easy to ignore features. Meanwhile, the improved C2f-Triplet attention structure was utilized to replace the C2f structure in the Neck part to capture the information of the strawberry image more comprehensively from the three dimensions, which enhanced the model’s target recognition ability in the case of fruit occlusion. Embedding the improved SAHead detection head into the YOLO v8n model enhanced the model’s recognition accuracy for strawberries with different ripeness levels in unstructured environments. The experimental results showed that the MSCS-YOLO model achieved an average accuracy of 94.22% in the task of recognizing three types of strawberries: ripe, moderately ripe and unripe, which was 1.38 percentage points and 5.42 percentage points higher than that of the YOLO v8n and RTDETR-L models, respectively;among them, the accuracy of recognizing ripe and moderately ripe strawberries achieved 96.35% and 92.00%, which was 0.82 percentage points and 3.66 percentage points higher than that of the YOLO v8n model, respectively. The MSCS-YOLO model demonstrated better recognition performance and higher accuracy regardless of evening, sunny day, direct sunlight or light irradiation conditions. In addition, the model size of the improved model was 6.42 MB, which was 45.22% and 86.93% smaller than that of the YOLO v7-tiny and YOLO v9c models, respectively, and achieved the synergistic optimization of accuracy and efficiency while maintaining a similar model size with YOLO v8n. Therefore, the MSCS-YOLO model was more advantageous for deployment and application in resource-limited environments, and it can provide reliable technical support for later practical applications on strawberry maturity.

    参考文献
    相似文献
    引证文献
引用本文

王永胜,丁 宇,张若晨,许洪光,范 玥.基于MSCS-YOLO的非结构化环境中草莓成熟度识别[J].农业机械学报,2026,57(4):296-308. WANG Yongsheng, DING Yu, ZHANG Ruochen, XU Hongguang, FAN Yue. Strawberry Maturity Recognition in Unstructured Environments Based on MSCS-YOLO[J]. Transactions of the Chinese Society for Agricultural Machinery,2026,57(4):296-308.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-08-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-15
  • 出版日期:
文章二维码