基于无人机遥感的夏玉米农田土壤呼吸速率估算方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

陕西省秦创原产业创新聚集区“四链”融合项目(2025CY-JJQ-21)、陕西省重点产业创新链项目(2024NC-ZDCYL-05-01)和云南省重大科技专项计划(202402AE090005)


Estimation Method of Soil Respiration Rate in Summer Maize Farmland Based on UAV Remote Sensing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确及时地估算农田土壤碳呼吸速率时空变化对揭示农业生产过程碳排放规律具有重要意义。传统方法在小尺度上能较好地模拟土壤呼吸动态,但在农田尺度上对空间异质性的描述仍存在不足。为实现土壤呼吸(Soil respiration)高空间分辨率准确估算,本研究以内蒙古中部典型地区夏玉米为研究对象,试验设置 1 个对照区(Tr1:100% ET施水,ET为蒸发蒸腾量)和 3 个调亏灌溉区(Tr2、Tr3、Tr4),利用静态箱法监测不同生育期土壤呼吸速率,并结合无人机遥感多光谱与热红外数据获取植被指数和土壤表面温度(TUAV)。进一步将 TUAV 与简单色素比值指数(Simple pigment ratio index, SRPI)、归一化植被指数2(Green-blue normalized difference vegetation index, NDVIg-b)和归一化色素叶绿素指数(Normalized pigment chlorophyll index, NPCI)分别引入Lloyd-Taylor模型,构建改进的植被-热指数(Vegetation-heat index,VHI)土壤呼吸估算模型,并与反向传播神经网络(Back propagation neural network,BPNN)模型估算结果进行比较。结果表明:Tr1~Tr4处理下,土壤表面温度(Temperature of the soil surface,TSF)与季节性土壤呼吸速率显著相关,相关系数分别为0.946、0.886、0.898和0.766;在9种表征作物光合作用能力的植被指数中,SRPI与季节性土壤呼吸速率相关性最高。基于SRPI和TUAV的VHI模型拟合效果最佳(R2=0.73),与BPNN模型(R2=0.81)相当。研究结果表明,结合无人机多光谱和热红外遥感数据与 VHI 模型,可在农田尺度实现土壤呼吸高时空分辨率异质性描述与制图,有效提升估算精度。

    Abstract:

    Accurate and timely estimation of spatiotemporal dynamics of farmland soil respiration rate is crucial for revealing carbon emission patterns during agricultural production. Traditional methods can simulate soil respiration dynamics at small scales, but they remain insufficient in characterizing spatial heterogeneity at the farmland scale. To achieve accurate estimation of soil respiration at high spatial resolution, it was focused on summer maize in a typical region of central Inner Mongolia. The experiment included one control treatment (Tr1: irrigation at 100% ET, where ET represents evapotranspiration) and three deficit irrigation treatments (Tr2, Tr3, Tr4). Soil respiration rates were monitored at different growth stages by using the static chamber method, while vegetation indices and soil surface temperature (TUAV) were retrieved from UAV-based multispectral and thermal infrared data. The TUAV, together with the simple pigment ratio index (SRPI), the green-blue normalized difference vegetation index (NDVIg-b), and the normalized pigment chlorophyll index (NPCI), were incorporated into the Lloyd-Taylor model to develop an improved vegetation-heat index (VHI) model for soil respiration rate estimation. The performance of this model was further compared with that of a back propagation neural network (BPNN) model. The results showed that under Tr1~Tr4 treatments, temperature of the soil surface (TSF) was significantly correlated with seasonal soil respiration rate, with correlation coefficients of 0.946, 0.886, 0.898 and 0.766, respectively. Among the nine vegetation indices indicative of crop photosynthetic capacity, SRPI exhibited the strongest correlation with seasonal soil respiration rate. The VHI model based on SRPI and TUAV achieved the best fitting performance (R2=0.73), which was comparable to the BPNN model (R2=0.81). Overall, it was demonstrated that integrating UAV multispectral and thermal infrared data with the VHI model enabled high-resolution characterization and mapping of soil respiration rate heterogeneity at the farmland scale, thereby improving estimation accuracy.

    参考文献
    相似文献
    引证文献
引用本文

崔利华,张梦飞,李凭阳,王胜蒲,范文泽,韩文霆.基于无人机遥感的夏玉米农田土壤呼吸速率估算方法[J].农业机械学报,2026,57(4):287-295,326. CUI Lihua, ZHANG Mengfei, LI Pingyang, WANG Shengpu, FAN Wenze, HAN Wenting. Estimation Method of Soil Respiration Rate in Summer Maize Farmland Based on UAV Remote Sensing[J]. Transactions of the Chinese Society for Agricultural Machinery,2026,57(4):287-295,326.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-09-06
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-15
  • 出版日期:
文章二维码