基于多尺度注意力视觉Mamba U-Net的耕地遥感分割方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(62172338)、陕西省科技厅重点研发计划项目(2025NC-YBXM-216)和陕西省教育厅重点研发项目(24JR158)


Remote Sensing Segmentation of Cultivated Land Based on Multi-scale Attention Vision Mamba U-Net
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    耕地遥感影像的准确分割对产量预测、农业经营和国家粮食安全至关重要。由于遥感农田图像分辨率高、尺寸大、种类多、边界不规则、背景复杂等特点,以及遥感图像分割中广泛应用的卷积神经网络和Transformer存在难以提取远程依赖关系和计算复杂度高等局限性,使得农田遥感图像分割研究仍具有一定挑战性。针对当前耕地遥感分割任务中存在的边界模糊、地类混杂等问题,本文提出一种新型多尺度注意力视觉Mamba U-Net(MSAVM-UNet)模型。该模型通过3个模块实现性能突破:首先,改进视觉状态空间模块采用双向选择性扫描机制,在保持线性计算复杂度的同时实现长程依赖建模;其次,通道感知注意力状态空间模块通过动态光谱-空间特征重标定,有效提升耕地与背景地物的区分度;最后,构建多尺度跨层级特征金字塔特征聚合模块,实现多粒度信息融合。在公开耕地数据集的试验表明,MSAVM-UNet在分割精度和计算效率方面均显著优于现有方法,平均分割精度和相似系数分别达到85.60%和84.46%。研究结果为智慧农业耕地精准监测提供了可靠技术支撑。

    Abstract:

    Accurate remote sensing image segmentation of cultivated land (CLRSIS) is crucial for yield prediction, agricultural management, and national food security. However, it remains challenging due to the high-resolution, large size and various remote sensing farmland images with irregularly boundaries and complex background. Convolutional neural networks(CNNs) and Transformers have been widely applied to RSI segmentation, but both of them have limited ability to handle long-range dependencies because of inherent locality or computational complexity. Aiming at the limitation of CNNs and Transformers, and the technical difficulties in CLRSIS, a multi-scale attention visual Mamba U-Net (MSAVM-UNet) model for CLRSIS was proposed. This model achieved performance breakthroughs through three innovative modules: firstly, modified visual state space module (MVSS) adopted a bidirectional selective scanning mechanism, enabling long-range dependency modeling while maintaining linear computational complexity. Secondly, channel-aware attention visual state-space (CAAVSS) effectively enhanced the discrimination between cultivated land and background features through dynamic spectral-spatial feature recalibration. Finally, multi-scale feature aggregation module (MSAA) built a cross-level feature pyramid to achieve multi-granularity information fusion. Experiments on public cultivated land datasets showed that this method was significantly superior to existing methods in terms of segmentation accuracy and computational efficiency, with the average segmentation precision accuracy and DSC achieving 85.60% and 84.46%, respectively. The research result can provide reliable technical support for the precise monitoring of cultivated land in smart agriculture.

    参考文献
    相似文献
    引证文献
引用本文

侯新刚,王勤,令伟锋.基于多尺度注意力视觉Mamba U-Net的耕地遥感分割方法[J].农业机械学报,2026,57(4):279-286. HOU Xin'gang, WANG Qin, LING Weifeng. Remote Sensing Segmentation of Cultivated Land Based on Multi-scale Attention Vision Mamba U-Net[J]. Transactions of the Chinese Society for Agricultural Machinery,2026,57(4):279-286.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-08-07
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-15
  • 出版日期:
文章二维码