基于BiLSTM-Transformer混合模型的丘陵地区履带式甘蔗收获机倾翻风险预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广西科技重大专项(桂科AA22117006)


BiLSTM-Transformer Hybrid for Predicting Tilt Risk of Crawler Sugarcane Harvesters in Hilly Terrain
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对履带式甘蔗收获机在丘陵地区作业时存在因车身重心高和轮距窄而易发生倾翻危险,且难以预测问题,本文通过样机测试,实时检测样机车架振动加速度变化,经频域处理分析,提取车架倾斜状态时振动特征,提出一种基于双向长短期记忆网络与Transformer混合模型的倾翻预测方法。通过对振动加速度信号预处理,应用经验模态分解提取倾斜状态的时域与频域特征,重构去噪后信号。利用BiLSTM捕捉长期依赖关系,采用Transformer提取局部时序关系,有效提高了样机倾翻预测准确性。试验结果表明,在不同状态下履带式甘蔗收获机倾翻预测准确率达到95.39%,耗时11.87ms。为进一步验证倾翻模型效果,对原始数据进行了t-SNE降维可视化,绘制了混淆矩阵图,为复杂环境下甘蔗收获机预警和调平系统的实时控制提供了依据。

    Abstract:

    To address the rollover risk of crawler-type sugarcane harvesters operating on hilly terrain-caused by a high center of gravity and narrow track width—this study establishes a real-time vibration measurement and prediction framework. Vibration acceleration signals of the harvester frame are collected during tilt tests on a dedicated experimental platform. The signals are processed in the frequency domain to extract key vibration features that characterize different inclination states. A hybrid BiLSTM-Transformer model is proposed to predict potential rollover conditions.In the proposed method, vibration acceleration data are first preprocessed and decomposed using empirical mode decomposition (EMD) to obtain denoised and reconstructed time-frequency components. The BiLSTM network effectively captures long-term temporal dependencies in the vibration sequences, while the Transformer module focuses on extracting local temporal and attention-based contextual features. The complementary strengths of these two networks enhance both learning efficiency and predictive stability.Experimental results demonstrate that the proposed hybrid model achieves a prediction accuracy of 95.39% with an average response time of 11.87ms, meeting real-time monitoring requirements. To further validate model effectiveness, t-SNE dimensionality reduction visualization and confusion matrix analysis are performed, confirming the model’s discriminative capability across different tilt states.This research provides a reliable theoretical and technical foundation for the development of real-time rollover warning and automatic leveling control systems for crawler-type sugarcane harvesters in complex hilly environments.

    参考文献
    相似文献
    引证文献
引用本文

李尚平,宋家华,文春明,李凯华,韦雨彤,程健华.基于BiLSTM-Transformer混合模型的丘陵地区履带式甘蔗收获机倾翻风险预测[J].农业机械学报,2026,57(4):213-223. LI Shangping, SONG Jiahua, WEN Chunming, LI Kaihua, WEI Yutong, CHENG Jianhua. BiLSTM-Transformer Hybrid for Predicting Tilt Risk of Crawler Sugarcane Harvesters in Hilly Terrain[J]. Transactions of the Chinese Society for Agricultural Machinery,2026,57(4):213-223.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-19
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-15
  • 出版日期:
文章二维码