基于3D激光雷达SLAM的温室芦笋采收机器人自主导航方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

江苏省重点研发计划项目(BE2021302)


Autonomous Navigation Methods of Greenhouse Asparagus Harvesting Robot Based on 3D LiDAR SLAM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对温室芦笋枝叶自然生长遮挡道路、地垄作业环境狭小导致芦笋采收机器人自主行走过程建图噪点多、定位误差大、建图精度低等问题,本文设计了一种基于3D激光雷达SLAM的温室芦笋采收机器人自主导航系统,首先利用Velodyne 16线三维激光雷达与N100惯性测量单元(Inertial measurement unit,IMU)传感器获取温室环境三维点云数据,并运用自适应点云滤波对点云数据进行预处理,滤除芦笋枝叶导致的噪点,减少导航系统计算量,其次运用基于扩展卡尔曼滤波的Cartographer纯定位算法进行全局重定位,最后运用Dijkstra算法进行全局路径规划,运用动态窗口算法进行局部路径规划。试验结果表明,自适应点云滤波处理最佳参数组合为K近邻点数量函数权重k1为6.912、标准差阈值函数权重s1为0.334、标准差阈值常数偏移s2为0.918,结合自适应点云处理的Cartographer算法可实现温室环境的高精度构建,最大绝对误差、最大相对误差和均方根误差分别为0.056m、9.3%和0.035m,改进的定位算法在温室环境的横向偏差不大于0.196m,纵向偏差不大于0.082m;自主行走系统以速度0.10、0.20、0.30m/s运行时,横向平均偏差、纵向平均偏差及航向平均偏差不大于0.082m、0.091m和7.562°,横向偏差标准差、纵向偏差标准差及航向偏差标准差不大于0.078m、0.092m和6.561°。提出的导航方法能满足温室内自主行走系统的高精度建图、定位和导航需求,为采收机器人在农业环境中的自主行走应用提供了理论与技术支撑。

    Abstract:

    Aiming to address the challenges posed by the natural growth of asparagus branches and leaves obstructing pathways and the limited working space in raised beds, which result in significant map construction noise, large localization errors, and low mapping accuracy during the autonomous navigation of asparagus harvesting robots, an autonomous navigation system was presented based on 3D LiDAR SLAM for greenhouse asparagus harvesting robots. Initially, 3D point cloud data from the greenhouse environment were acquired by using a Velodyne 16-line 3D LiDAR sensor combined with an N100 inertial measurement unit (IMU). An adaptive point cloud filtering method was employed to preprocess the point cloud data, removing noise caused by the asparagus branches and leaves, thereby reducing the computational burden on the navigation system. Subsequently, a global re-localization process was performed by using the Cartographer pure localization algorithm based on extended Kalman filtering (EKF). For path planning, the Dijkstra algorithm was utilized for global path planning, while the dynamic window approach (DWA) was applied for local path planning. Experimental results demonstrated that the optimal parameter combination for the adaptive point cloud filtering method was k1=6.912, s1=0.334, and s2=0.918. The integration of adaptive point cloud filtering with the Cartographer algorithm enabled high-precision mapping in the greenhouse environment, with a maximum absolute error of 0.056m, a maximum relative error of 9.3%, and a root mean square error of 0.035m. The improved localization algorithm achieved lateral deviation no greater than 0.196m and longitudinal deviation no greater than 0.082m in the greenhouse environment. During autonomous navigation at speeds of 0.10m/s, 0.20m/s, and 0.30m/s, the lateral, longitudinal, and heading mean deviations were no greater than 0.082m, 0.091m, and 7.562°, respectively, while their corresponding standard deviations did not exceed 0.078m, 0.092m, and 6.561°. The proposed navigation framework satisfied the high-precision mapping, localization, and navigation requirements for autonomous systems in greenhouse environments, providing a theoretical and technical foundation for the deployment of harvesting robots in agricultural settings.

    参考文献
    相似文献
    引证文献
引用本文

汪小旵,谢慎亮,黄薛凯,王得志,黄慧星.基于3D激光雷达SLAM的温室芦笋采收机器人自主导航方法[J].农业机械学报,2026,57(4):138-150. WANG Xiaochan, XIE Shenliang, HUANG Xuekai, WANG Dezhi, HUANG Huixing. Autonomous Navigation Methods of Greenhouse Asparagus Harvesting Robot Based on 3D LiDAR SLAM[J]. Transactions of the Chinese Society for Agricultural Machinery,2026,57(4):138-150.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-01
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-15
  • 出版日期:
文章二维码