基于动态兴趣空间的烟草收获机自动对行系统设计与试验
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

中国烟草总公司重点研发项目(110202301016-04)


Design and Experiment of Automatic Row-following System for Tobacco Harvester Based on Dynamic Region of Interest
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对当前雷达感知在处理田间信息时存在干扰因素多、计算时间长等问题,本文以烟草收获机为对象,设计了一种结合激光雷达与北斗定位的自动对行系统。控制算法根据机身历史定位坐标拟合点云处理中心线,解决了机身偏斜造成的引导线偏斜、对错行等问题;根据已采集的烟株点云信息,计算当前田块行距和株高,作为提取兴趣空间(Region of interest,ROI)的决策依据;为缩短点云处理时间,动态调整ROI空间长度、宽度和高度范围,滤除干扰点云,提高计算效率和对行精度;提出基于点云密度的作物行分类方法,通过垂直投影和滑动窗口方法,确定K-means算法初始聚类中心,提高烟草行导航线拟合准确度;对获得的前视烟草行导航线,采用最优预瞄算法实现对行跟踪行驶。在3组不同行距的烟田开展自动对行测试,结果表明,机身中心相对烟草行实际中心线最大横向误差为0.107m,平均横向偏差为0.074m,收获导航线准确率为94.8%,该系统能够有效保证收获机自动对行行驶;提出的动态ROI点云处理算法相比已有算法,平均点云处理时间由536.2ms降至148.95ms。本文提出的烟草收获机自动对行系统及动态ROI点云处理算法,为大田行植作物装备无人自主作业提供了技术参考。

    Abstract:

    In response to the problems as multiple interference factors, and long computation time in processing field information using current radar perception, an automatic alignment system that combined laser radar and Beidou positioning for tobacco harvesters. The control algorithm fit the point cloud processing centerline based on the historical positioning coordinates of the aircraft body, effectively solving problems such as deviate guide lines and misalignment caused by aircraft body deviation. Based on the collected point cloud information of tobacco plants, the current row spacing and plant height of the field were calculated as the decision basis for extracting the region of interest (ROI). To shorten the processing time of point clouds, the length, width, and height range of ROI space were dynamically adjusted, and interference point clouds were filtered out. A crop row classification method was proposed based on point cloud density, and the initial clustering center of K-means algorithm was determined through vertical projection and sliding window method to improve the accuracy of tobacco row navigation line fitting. The optimal preview algorithm was used to track and drive the obtained forward tobacco navigation line. Automatic parallel testing was conducted in three tobacco fields with different row spacing. The maximum lateral error between the center of the machine and the actual centerline of the tobacco row was 0.107m, with an average lateral error of 0.074m. The accuracy of the harvest navigation line was 94.8%, indicating that the system can effectively ensure automatic parallel driving of the harvester. The proposed dynamic ROI point cloud processing algorithm reduced the average point cloud processing time from 536.2ms to 148.95ms compared with existing algorithms. The tobacco harvester automatic alignment system and dynamic ROI point cloud processing algorithm proposed can provide technical references for unmanned autonomous operation of field planting crop equipment.

    参考文献
    相似文献
    引证文献
引用本文

王笑乐,戴宝宝,戴祯,胡志伟,李宇轩,赵金辉,杨洋,陈黎卿.基于动态兴趣空间的烟草收获机自动对行系统设计与试验[J].农业机械学报,2026,57(4):50-61. WANG Xiaole, DAI Baobao, DAI Zhen, HU Zhiwei, LI Yuxuan, ZHAO Jinhui, YANG Yang, CHEN Liqing. Design and Experiment of Automatic Row-following System for Tobacco Harvester Based on Dynamic Region of Interest[J]. Transactions of the Chinese Society for Agricultural Machinery,2026,57(4):50-61.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-10-18
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-15
  • 出版日期:
文章二维码