基于多特征融合的果园无人机位姿估计方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(32401721)、陕西省自然科学基础研究计划项目(2024JC-YBQN-0215)和国家重点研发计划项目(2022YFD1900A02)


Multi-feature Fusion-based Pose Estimation Method for UAVs in Orchards
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决果园环境中冠层遮挡和特征重复导致果园无人机位姿估计系统无法正常工作的问题,本文利用视觉惯性里程计技术,结合点特征与线特征几何约束,设计一种多特征融合的果园无人机位姿估计方法。利用EDLines算法取代传统的LSD算法提取图像中的线特征,通过光流法实现特征点与特征线在连续帧间的快速跟踪与匹配,并进行三维特征重建得到特征位姿。构建基于非线性优化的位姿估计模型融合惯性信息与视觉信息,在局部滑动窗口内,构造联合最小化的全局代价函数,通过求解该函数完成准确的位姿估计。选取结果期苹果园以及葡萄温室进行试验,以绝对轨迹误差和相对轨迹误差作为评价指标,验证所设计位姿估计方法性能。试验结果表明,相较于利用LSD算法提取线特征的传统位姿估计方法,所设计方法绝对轨迹误差平均值降低10%,相对轨迹误差平均值降低27%,有效提高了果园无人机导航系统精度和鲁棒性,为保障果园无人机作业安全性提供了可靠支撑。

    Abstract:

    Aiming to address the challenge where canopy occlusion and repetitive features compromise unmanned aerial vehicle (UAV) pose estimation systems in orchard environments, a multi-feature fusion-based pose estimation method for UAVs in orchards was designed by introducing visual-inertial odometry technology and incorporating geometric constraints from point and line features. Firstly, the EDLines algorithm replaced the traditional LSD for extracting line features, while optical flow enabled rapid tracking and matching of feature points and lines across consecutive frames, with feature poses obtained through 3D feature reconstruction. Secondly, a tightly coupled pose estimation model was constructed to fuse inertial and visual information, within a local sliding window framework, a jointly minimized global cost function was established, the accurate position and attitude information of the orchard UAV was obtained by solving the cost function through optimization methods. Finally, comparative experiments were conducted in fruit-bearing apple orchards and grape greenhouses, with absolute trajectory error and relative trajectory error serving as evaluation metrics to validate the method’s effectiveness. Experimental results demonstrated that compared with traditional pose estimation methods utilizing LSD algorithm-extracted line features, the proposed method reduced the average absolute trajectory error by 10% and the average relative trajectory error by 27%. This approach effectively enhanced the accuracy and robustness of orchard drone navigation systems, providing reliable support for ensuring the safety of orchard drone operations.

    参考文献
    相似文献
    引证文献
引用本文

刘旭航,褚子龙,赵红利,于嘉辉,韩文霆.基于多特征融合的果园无人机位姿估计方法[J].农业机械学报,2026,57(4):1-9. LIU Xuhang, CHU Zilong, ZHAO Hongli, YU Jiahui, HAN Wenting. Multi-feature Fusion-based Pose Estimation Method for UAVs in Orchards[J]. Transactions of the Chinese Society for Agricultural Machinery,2026,57(4):1-9.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-09-25
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-15
  • 出版日期:
文章二维码