Grid Runoff Parameters Estimation and Adjustment of GSAC Model Based on HWSD
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The grid-based Sacramento (GSAC) model divides a basin into discrete areas using grids. Conventionally, it is difficult to achieve the grid parameter for runoff module of GSAC model. With an aim to solve this problem, a method for estimating the runoff parameters of GSAC model using the soil property data of harmonized world soil database (HWSD) was proposed, in which the physical and chemical characteristics of each soil layer were given on the basis of the division of topsoil (0~30cm) and subsoil (30~100cm). Firstly, the percentages of sand and clay content and texture classification in topsoil (T-layer) and subsoil (S-layer) of HWSD were extracted. And the data was used to estimate the soil water constants such as wilting point, field capacity and saturated water content in each grid. Secondly, the upper layer thickness of GSAC model was adjusted using wilting point, field capacity and tension water capacity of T-layer, and a climatic index defined as ratio of mean annual precipitation to potential evapotranspiration. In each grid, the soil water constants of T-layer and S-layer were converted into those in the upper layer and lower layer of GSAC model by upper layer thickness. Finally, runoff parameters in each grid were estimated using the upper layer thickness and the converted soil water constants of GSAC model. Meanwhile, totally 12 adjustment coefficients were used to adjust the runoff parameters, and all the adjustment coefficients were determined by the GSAC model via the free search (FS) algorithm. The results of model application in the Hulan River Basin indicated that it was feasible to estimate runoff parameters of GSAC model using HWSD soil property data;the better runoff simulation results were obtained by GSAC model using the adjusted runoff parameters;and Nash efficiency coefficients (NSEC) were 0.81 and 0.83 of the calibration phase and verification phase, respectively.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 17,2017
  • Revised:
  • Adopted:
  • Online: September 10,2017
  • Published: