Impacts of Oxygation on Plant Growth, Yield and Fruit Quality of Tomato
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Oxygation, which can impose aerated water to root zoon through Mazzei injector and subsurface drip irrigation (SDI) line, has been effectively overcoming problems associated with hypoxic soil environment induced by SDI and showing yield potentials and great application prospects. The objective of this study was to explore the impacts of oxygation under different irrigation levels and emitter depths conditions on soil aeration, plant growth, fruit yield and quality. Plot experiments were conducted in a greenhouse during tomato growing season (from Apr. 11, 2016 to Jul. 2, 2016) under the oxygation (O) and SDI (S) conditions with two different irrigation levels correlated with crop-pan coefficients (kcp) being 0.6 (W1) and 1.0 (W2) and two different emitter depths of 15cm (D1) and 25cm (D2), respectively. Consequently, there was a total of eight treatments (W1D1O,W1D1S,W2D1O,W2D1S,W1D2O,W1D2S,W2D2O and W2D2S) and replied three times, and the plots followed a randomized complete design. In order to assess the benefits of oxygation on soil aeration, variations of soil oxygen concentration (Os) and soil volumetric water content (θv) were investigated. Meanwhile, plant height, stem diameter, leaf area, yield of per plant and fruit weight at harvest were measured, and blooming date and the period of flowering were recorded, and the lycoypene, vitamin C, soluble sugar and organic acid contents of fruit were analyzed in order to study the impacts of oxygation on plant growth, yield and fruit quality. The results showed that oxygation appeared to improve soil aeration effectively accompanied with Os significantly increased by 6.42% (P<0.05) and θv decreased by 5.29%, compared with no-aerated SDI. Meanwhile, stem diameter and leaf area with oxygation were significantly 4.55% and 16.21% higher than SDI, respectively (P<0.05). On other hands, compared with SDI treatments, flowering was about 2 days later and the flowering period showed a tendency to prolong under oxygation conditions. What’s more, fruit dry weight in the biomass compositions was significantly increased by 23.57% and yield of per plant, fruit weight and water use efficiency with oxygation were significantly 29.07%, 23.93% and 28.11% higher than no aeration SDI, respectively. Thus, oxygation significantly stimulated plant growth and development, and then improved yield by controlling soil water-air ratio and ameliorating soil aeration. What’s more, compared with no-aerated SDI, the lycoypene, vitamin C and soluble sugar contents and sugar/acid ratio of fruit under oxygation conditions were significantly increased by 37.73%, 31.43%, 32.30% and 45.64%, respectively. Thus, not only fruit yield, but also fruit quality and taste benefitted from oxygation. On other hands, although increasing irrigation level from 0.6 to 1.0 also stimulated plant growth and development, and then increased fruit yield, lycoypene and soluble sugar contents of fruit were significantly decreased. In other words, yield increased with irrigation level increasing, but fruit quality declined. But the effects of irrigation level were less intensive than the positive effects of oxygation on fruit quality. What’s more, oxygation and increasing irrigation level interactively affected on yield. Thus, when all of fruit quality factors, plant growth and development and yield were considered together, combinations of oxygation and the 1.0 irrigation level (W2D1O and W2D2O) were the preferable treatments.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 26,2017
  • Revised:
  • Adopted:
  • Online: August 10,2017
  • Published: