Effects of Noncondensable Gases and Turbulent Fluctuations on Cavitation Phenomenon in Injector Nozzle
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Fuel spray atomization strongly affected engine economic performance and emissions, which in turn was significantly influenced by nozzle cavitation phenomenon with the high injection pressure in diesel and GDI engine. Aiming to study the influence of noncondensable gases and turbulent pressure fluctuations on modeling of nozzle cavitation, Schnerr and Sauer cavitation model and Singhal cavitation model were used to model nozzle cavitation, which were both coupled with homogeneous equilibrium multiphase model and realizable k-ε turbulence model. Then, the Singhal cavitation model was used to model nozzle cavitation with homogeneous equilibrium model and different turbulence models. The comparison of simulation results and experimental results showed that noncondensable gases and turbulent pressure fluctuations had significant impact on modeling nozzle cavitation. The simulation result ignoring noncondensable gases and turbulent pressure fluctuations seriously underestimated the volume fraction of gas phase in nozzle, which was just 42% of the experimental results, while the volume fraction of gas phase calculated by the one considering turbulent pressure fluctuations and noncondensable gases agreed well with experimental results, which was 96% of the experimental results. The results indicated that considering noncondensable gases and turbulent pressure fluctuations would improve accuracy of nozzle cavitation simulation. The calculated gas phase considering noncondensable gases and turbulent pressure fluctuations was diffused to some extent at the end of gas phase region, which was caused by the expansion of noncondensable gases in fluid. Turbulence viscosity slightly affected the distribution of gas phase by affecting the velocity and pressure of fluid.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 11,2016
  • Revised:
  • Adopted:
  • Online: April 10,2017
  • Published: