Producing Epoxyethane as Food Fumigant Based on Biocatalysis
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In addition to application in chemical manufacturing processes, epoxyethane is widely used in processes of food fumigating sterilization, particularly of grains and dried fruits. During the last decades, many research works have been focused on epoxidation reactions of ethylene by supported catalysts such as transition metal complexes and metal nanoparticles. In contrast with chemical synthetic methods, the biocatalytic reaction appears to be a mild and simple method. One biocatalytic method for producing epoxyethane is using methane monooxygenase (MMO) to insert oxygen across the carbon double bonds of ethylene. Epoxyethane synthesis by Methylosinus trichosporium IMV 3011 whole cells which contains the MMO has significant application potential as it is performed at normal temperature and pressure and causes no pollution. The process for producing epoxyethane was described. The effect of initial ethylene concentration on production of epoxyethane was studied. Initial concentrations of oxygen, ethylene and nitrogen were 50%, 20% and 30%, respectively. The amount of epoxyethane formed by free biocatalyst was 29μmol/mg in approximately 6h. Moreover, the amount of epoxyethane formed by immobilized biocatalyst was 34μmol/mg in approximately 8h. In a batch reaction system, the regenerated immobilized biocatalyst can be repeatedly used for 8 times and 89% of initial MMO activity was retained, and the amount of epoxyethane formed was 3.4nmol.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 29,2016
  • Revised:February 10,2017
  • Adopted:
  • Online: February 10,2017
  • Published: