Spatial Semantic Network Implementation Algorithms Based on Binocular Vision
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Environmental perception is a vital part of driverless driving. The present widely used radar is trapped with its expensive cost and unitary information. Based on the deep learning technology, a joint training network referred to as spatial semantic network (SSN) was proposed, which can realize image segmentation and stereo estimation simultaneously. Through spatial mapping, SSN can input binocular images and output semantic point clouds. The SSN was trained by the KITTI dataset, and then the trained model was validated by KITTI test set, of which the verification result showed that the accuracy of image segmentation can reach 82.5%. And for the near points, the accuracy of stereo estimation can reach 95.5%, where the error within 5% was considered as accurate. Moreover, the processing speed can reach 0.135s per frame, generating around 48000 semantic cloud point coordinates per frame, which was close to the realtime requirement under lowspeed conditions, and had strong practical application value. 

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 20,2019
  • Revised:
  • Adopted:
  • Online: July 10,2019
  • Published: July 10,2019
Article QR Code