Design and Experiment of Wheat Planter with Straw Crushing and Inter-furrow Collectingmulching under Full Amount of Straw and Root Stubble Cropland
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    A large amount of untreated straw is left in the field after rice harvest, which greatly hinders mechanized sowing and subsequent growth of wheat. The traditional solution is to bury the smashed straw in the soil or cover the surface of soil through multiple operations, which not only results in low efficiency and high energy consumption, but also hinders wheat germination due to excessive straw in the vicinity of the wheat seeds. In order to solve these problems, a planter with straw smashing and strip laying was provided, which adopted the clean area planting technique under full amount of straw and root stubble cropland. The planter was mainly composed of frame, straw crushing device, straw guiding device, rotary tilling device, seeding device and pressing device. In a single pass, the planter could complete multiple operation processes, including strawstubble smashing, seedbelt cleaning, interrow stacking, seedbed treatment, fertilization sowing, and soil covering and suppression. The key components such as straw crushing device, straw guiding device and rotary tilling device were theoretically analyzed to determine structures and parameters. In order to achieve high quality and smooth sowing of wheat in the seed belt, the sowing device and pressuring device were designed. Threefactor and threelevel orthogonal performance test was implemented by setting smashing spindle speed, radial distance and working speed as the influence factors, with straw cleaned rate and variable coefficient of the strip width as the evaluation index. Test results showed that when the smashing spindle speed was 2200r/min, radial distance was 20mm, working speed was 0.8m/s, and rotary speed was 300r/min, the average length of the straw was 110mm, straw crushed rate was 91.47%, straw cleaned rate was 92.58%, variable coefficient of the strip width was 10.91%, average sowing depth was 41mm, and seeding depth pass rate was 97.32%. Through tracking growth trend and measuring the yield, it was shown that there was no obvious shortage of seedlings and weak seedlings compared with the conventional seeding planter, and the yields of the two seeding planters were basically the same.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 08,2019
  • Revised:
  • Adopted:
  • Online: December 10,2019
  • Published: December 10,2019
Article QR Code