Experiment on Droplet Distribution Characteristics in Spray Field of Impinging Nozzle
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The droplet sizes are different at different positions in the spray field of flat-fan nozzle which are widely used in agriculture. It shows like the U-shaped distribution, that is, the droplet diameters of the middle droplet are smaller and the droplet diameters of both sides are larger, which results in the differences of the droplet depositional behavior on the targets at different points of the same height in the horizontal direction, leading to different control effects. The droplet sizes of the impinging nozzle were obtained according to the test system for atomizing performance of nozzles. Experiments were conducted on droplet distribution characteristics in spray field of the impinging nozzle with the exit diameter of 1mm and the groove angle of 30°. The nozzle was a new nozzle based on the coupling of jet and impinging jets. It was found that the droplet diameters of the middle droplet were uniform and the droplet diameters of both sides were smaller. For instance, when the spraying pressure was 0.4MPa, the droplet diameters of the middle droplet were 265~268μm and the droplet diameters of both sides were 250~252μm on the test surface at height of 300mm. The new nozzle was beneficial to solve the insufficiency of uneven droplet size distribution of boom sprayers in field operation. The characteristics of the new nozzle were analyzed theoretically and the three times of atomization (disturbance, impact and oscillating) in the cracking-zone was considered as the fundamental cause of these characteristics. Meanwhile, the droplet distribution uniformity of spray field was quantified by the radial nonuniformity index (RNI). It proved that the radial nonuniformity index can reflect the overall non-uniformity of spray field. The value of radial nonuniformity index was varied in a small range (0.47~0.51) when the pressure was in the range of 0.6~0.7MPa, showing that the spray field of the impinging nozzle had good droplet uniform distribution. The impinging nozzle provided a beneficial technological support for the development of intelligent precision spraying machine for plant protection.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 24,2018
  • Revised:
  • Adopted:
  • Online: December 10,2018
  • Published:
Article QR Code