
2 0 2 5 年 2 月 农 业 机 械 学 报 第 56 卷 第 2 期

doi:10. 6041 / j. issn. 1000鄄1298. 2025. 02. 049

Fishing Effort Estimation of Trawlers Based on Vessel
Monitoring System Data

LI Dan1 摇 LU Feng1,2 摇 XU Shuo1,2 摇 WANG Yu1,2 摇 XUE Muhan1 摇 NI Hanchen1 摇 FANG Hui2,3
ZHANG Man4 摇 MA Zhenhua5 摇 CHEN Zuozhi5 摇 XU Jian1

(1. Institute of Fisheries Engineering, Chinese Academy of Fishery Sciences, Beijing 100141, China
2. Laoshan Laboratory, Qingdao 266237, China

3. East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
4. College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China

5. South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China)

Abstract: Estimating trawler fishing effort plays a critical role in characterizing marine fisheries
activities, quantifying the ecological impact of trawling, and refining regulatory frameworks and policies.
Understanding trawler fishing inputs offers crucial scientific data to support the sustainable management of
offshore fishery resources in China. An XGBoost algorithm was introduced and optimized through Harris
Hawks Optimization (HHO), to develop a model for identifying trawler fishing behaviour. The model
demonstrated exceptional performance, achieving accuracy, sensitivity, specificity, and the Matthews
correlation coefficient of 0郾 971 3, 0郾 980 6, 0郾 963 2, and 0郾 942 5, respectively. Using this model to
detect fishing activities, the fishing effort of trawlers from Shandong Province in the sea area between
119毅E to 124毅E and 32毅N to 40毅N in 2021 was quantified. A heatmap depicting fishing effort, generated
with a spatial resolution of 1 / 8毅, revealed that fishing activities were predominantly concentrated in two
regions: 121郾 1毅E to 124毅E, 35郾 7毅N to 38郾 7毅N, and 119郾 8毅E to 122郾 8毅E, 33郾 6毅N to 35郾 4毅N. This
research can provide a foundation for quantitative evaluations of fishery resources, which can offer vital
data to promote the sustainable development of marine capture fisheries.
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0摇 Introduction

Marine fisheries are a vital component of the
marine economy for coastal nations. In pursuit of
advancing the marine economy, global fishing intensity
has surged, driven by the expansion of fishing fleets
and significant advancements in fishing technology and
equipment[1] . This increase has imposed considerable
pressure on the sustainable development of the marine
ecological environment and biodiversity[2 - 5] . In this
context, monitoring fishing efforts is essential for
tracking changes in fishery resources, assessing marine
ecological vulnerability, and supporting marine spatial
planning[6] . Traditional methods for estimating fishing
effort have largely depended on fishing logs and catch

data, which are prone to various human biases and
time delays. Issues such as inconsistent record鄄
keeping, underreporting, misreporting, and the
inherent time lag in data collection can significantly
undermine the accuracy and timeliness of fishing effort
estimates[7] . These challenges highlight the need for
more robust and reliable data sources and
methodologies to assess fishing pressure on marine
resources with great precision. The vessel monitoring
system ( VMS ), which tracks fishing vessels by
providing dynamic data on vessel position, speed, and
reporting time, offers a promising new data source for
fisheries research[8] . VMS not only provides real鄄time
insights into fishing vessel activities but also enables
more accurate and timely assessments of fishing



pressure on marine ecosystems. This enhances the
precision of fishing effort estimates and supports the
development of effective management strategies aimed
at ensuring the sustainability of fisheries.

The data obtained from VMS provides critical
insights into the operational status of fishing vessels.
By analyzing this data, it became possible to discern
the fishing activities of vessels[9 - 15], facilitating the
estimation of fishing effort[16] . The accuracy in
identifying the operational status of fishing vessels
directly impacted the precision of fishing effort
estimations. Early fishing behaviour recognition
algorithms primarily focused on extracting features such
as vessel speed, heading, and operational time,
applying thresholds to classify vessel activity[17 - 18] .
However, the threshold鄄based approach was
constrained by the limited features available, making it
difficult to generalize across all fishing vessel types[8],
and often led to overestimates of fishing effort[19] .

Machine learning algorithms offer an advanced
approach by exploring the nonlinear relationships
between VMS data and fishing behaviour, and have
become central to current research on fishing vessel
status recognition[8] . For example, ERICO et al. [20]

introduced a Hidden Markov model based on speed to
identify fishing behaviours in trawlers, achieving an
accuracy rate of 85% . This model established a
nonlinear relationship between speed and fishing
behaviour, enhancing recognition accuracy. However,
it relied solely on a single feature input, which limited
its overall accuracy. FAUSTINATO et al. [21] extracted
geometric features from continuous trajectories and
applied a Random Forest model to identify fishing
behaviour, reaching an accuracy rate of 88% for
trawler fishing behaviour recognition. While this study
optimized the feature composition, it neglected spatial
position data, which constrained further improvements
in accuracy. LI et al. [22] employed XGBoost to identify
trawling fishing behaviours in vessels from Liaoning
Province and estimated fishing effort. DAVID et al. [23]

constructed a comprehensive feature matrix by
extracting extensive spatial and vessel dynamic data,
using a deep convolutional neural network to recognize
fishing behaviours, achieving an accuracy of 96% .
However, deep neural networks are encumbered by
challenges such as numerous parameters, complex

parameter tuning, high computational costs, and long
training times.

Leveraging Beidou vessel position data, a Harris
Hawks Optimization extreme gradient boosting (HHO
XGBoost) algorithm was presented to develop a fishing
behaviour recognition model for trawlers. The proposed
model investigated the spatiotemporal distribution
patterns of fishing efforts in Shandong Province in
2021, with the aim of offering an innovative approach
to estimate trawler fishing effort.

1摇 Material and Methods

1郾 1摇 Data Preparation
The experimental vessel position data were

collected from 3 600 trawlers in Shandong Province in
2021, covering the sea area between 119毅E to 124毅E
and 32毅 N to 40毅 N. The dataset had a temporal
resolution of 3 min and a spatial resolution of
approximately 10 m. Each vessel position record
included key information such as latitude, longitude,
speed, transmission and reception timestamps, and
fishing zone details.

In trawling operations, multiple nets were
typically towed behind the vessel, which required
deceleration and a constant speed to maintain uniform
tension on the trawl nets. The duration of trawling
sessions, typically ranging from 3 h to 5 h, was
influenced by fish density. This study covered the full
trawling process, which from net deployment to
retrieval, and categorized the trawler status into two
primary states: fishing and non鄄fishing. The fishing
state encompassed net deployment, active trawling,
and net retrieval, while the non鄄fishing state was
further subdivided into anchored mooring and
navigation.

Before annotation, the dataset underwent a thorough
cleaning process to remove records with missing or
erroneous values for longitude, latitude, speed or
timestamps. The distance of each vessel position from the
coastline was precisely calculated, and data were
segmented based on accurate port entry and exit
timestamps. Given the potential for signal fluctuations
during satellite data reception, as well as occasional
manual obstructions to transmission sources, trajectory
segments were carefully segmented if the time elapsed
between consecutive position reports exceeded 3 h.
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Leveraging the expertise of fisheries professionals,
the data from 12 trawling vessels based in Liaoning
Province, covering the period from September 2019 to
December 2021, were carefully calibrated. During this
calibration process, the vessels 爷 fishing status was
annotated with “1冶 for fishing and “0冶 for non鄄fishing
states. Key operational characteristics of the fishing
vessels were then extracted for each record from the
calibrated dataset. These parameters included the
forward time interval, distance travelled, the shortest
distance to China蒺s coastline, the shortest distance to
all ports and shelter anchorages in the Yellow Sea and
Bohai Sea, theoretical speed, current speed, azimuth
difference, rate of change in azimuth, time of day, and
month. These critical parameters provided valuable
insights into the fishing patterns, navigational
behaviour, and operational efficiency of the trawling
vessels throughout the study period.
1. 2摇 Algorithm Overview

Beidou vessel position data was utilized to extract
feature vectors, which were analyzed to classify the
vessels爷 engagement in fishing activities. Following
this classification, fishing effort was quantified. The
overall system architecture for this process was
presented in Fig. 1.

Fig. 1摇 Overall system architecture
摇

The method outlined for calculating trawler
fishing effort, based on Beidou vessel position data,
comprised two key components. The first component
involved constructing a fishing behaviour

discrimination vector from the vessel position data,
followed by the application of an XGBoost classifier,
optimized via the Harris Hawks Optimization
algorithm, to identify the occurrence of fishing
activities. The second component calculated the
fishing effort by integrating the classifier蒺s output with
both static and dynamic information extracted from the
vessel position data.
1郾 3 摇 Principle of HHO XGBoost Based Fishing

Behavior Classifier
Aimed to utilize XGBoost for the identification of

trawler fishing behaviour. XGBoost is a gradient鄄
boosted ensemble learning framework[24] that constructs
models by iteratively incorporating the n鄄th weak
learner, with the input being the residual of the (n -
1)鄄th prediction. This process stacked multiple weak
learners to progressively minimize residuals, ultimately
approximating the true values. Decision trees were
employed as weak learners. The objective function of
the fishing vessel status recognition model based on
XGBoost was expressed as follows:

Obj = L + 移
n

i = 1
赘( f j) (1)

where L represented the loss function, 移
n

i = 1
赘 ( f j )

represented the complexity regularization term. In the
t鄄th iteration, the predicted value of the model for the
i鄄th sample was as follows:

ŷ( t)
i = 移

t

k = 1
fk(xi) = ŷ( t - 1)

i + ft(xi) (2)

where t represented the iteration number; i denoted the
sample index, with xi representing the training vessel
position data; ŷ( t)

i was the predicted result for sample i
after the t鄄th iteration; ft(xi) was the prediction result
from the t鄄th weak learner; k indicated the index of the
weak learner. Based on the above, the objective
function can be expressed as:

Obj( t) = 移
n

i = 1
L( ŷ( t)

i ,yi) + 移
n

i = 1
赘( fi) =

移
n

i = 1
[yi - ( ŷ( t - 1)

i + ft(xi))] 2 + 移
n

i = 1
赘( fi) (3)

A second鄄order Taylor series expansion on the
objective function was defined in Equation (4):

Obj( t) = 移
n

i =
[

1
(yi - ŷ( t - 1)

i ) 2 + gi ft(xi) +

1
2 hi ft(xi) ]2 + 赘( ft) + C (4)
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gi = 鄣ŷ( t - 1)i
(yi - ŷ( t - 1)

i ) 2

hi = 鄣2
ŷ( t - 1)i

(yi - ŷ( t - 1)
i ) 2

where C represented a constant. Given the above, the
objective function can be expressed as:

Obj( t) = 移
n

i =
(

1
gi棕q(xi) + 1

2 hi棕2
q(xi )) + 酌N +

1
2 姿 移

N

j = 1
棕2

j =

移
N

j =
[

1
GJ棕J +

1
2 (HJ + 姿)棕2 ]j + 酌N (5)

where 棕q(xi) represented the prediction made by the
current weak learner for sample xi when it fell into the
corresponding node q(xi). Specifically, 棕q(xi) = ft(xi) =
棕 j, where 棕 j was the weight associated with leaf node

j. Given GJ = 移
i沂IJ

gi;GJ = 移
i沂IJ

gi, where IJ denoted

the set of samples falling into leaf node J, the optimal
weight 棕 j for leaf node j can be computed to obtain the
optimal solution q ( xi ). To find the optimal solution
q(xi),the optimal weight 棕 j for leaf node j can be
calculated as:

棕 j = -
移
i沂IJ

gi

移
i沂IJ

hi + 姿
(6)

The optimal solution for the corresponding
objective function was calculated as follows:

Obj( t)(q) = - 1
2 移

N

j =

(
1

移
i沂IJ

g )i

2

移
i沂IJ

hi + 姿
+ 酌N (7)

Equation ( 7 ) served as a metric for assessing the
performance of a weak learner蒺s leaf nodes, with a
higher score indicating improved algorithm performance
in recognizing fishing vessel behaviour.

However, the application of XGBoost requires the
adjustment of multiple parameters, and the selection of
parameter values significantly influences its
performance. The use of the HHO algorithm was
proposed to optimize XGBoost. The HHO algorithm,
introduced by Heidari, was inspired by the hunting
behaviour of Harris Hawks[25] and involved several
phases, including discovery, the transition from
exploration to attack, and the attack phase.

Discover: Harris Hawks remained stationary in
the desert, continuously observing their surroundings.
They attempted to identify the most favourable points
by making random exploratory suggestions:

Xmat(t +1) =
Xmatrand(t) - r1 |Xmatrand(t) -2r2Xmat(t) | (q逸0郾 5)

Xmatrabbit(t) - xXmatm(t) - r3[AL - r4(UL -AL)] (q <0.5{ )

(8)
where Xmat ( t + 1) represented the position vector,
Xmatrabbit( t) was the hunt position vector, Xmatrabbit ( t)
represented the hawk randomly selected hawk at the
current population, Xmatm ( t) was the average position
of current hawk position and can be denoted as

1 / N移
N

i = 1
赘Xmati( t), r1,r2,r3,r4,q denoted the random

value in [0,1]. AL,UL denoted the lower and upper
values, respectively.

Exploration to attack: Once the hunt was
detected, the task of the hawk group was to reduce the
energy expenditure of the hunt.

E = 2E (0 - t
T )+ 1 (9)

where E was the energy of the escaped hunt, E0

denoted the initial energy of the hunt, T was the
maximum number of iterations. The attack was
determined following the strategies of soft, hard, soft
with progressive rapid dives, and hard with progressive
rapid dives[25 - 26] . Soft surround represented a strategy
employed by the Harris Hawks to reduce the energy
required for hunting through the use of sudden attacks.

Xmat( t + 1) = 驻Xmat( t) -
E | JXmatrabbit( t) - Xmat( t) | 摇

( r逸0. 5,E逸0. 5) (10)
驻Xmat( t) = Xmatrabbit - Xmat( t)

where 驻Xmat ( t) denoted the difference between the
current position in the t鄄th iteration and the current
position of the hunt, J was the jump strength. Hard
surround was a situation where the energy of the hunt
was considerably reduced.

Xmat( t + 1) = Xmatrabbit( t) - E |Xmat( t) |
( r逸0. 5, |E |臆0. 5) (11)

Soft surround with progressive rapid dives
indicated that the hunt possessed sufficient energy. The
Harris Hawks seeked to deplete the hunt蒺s energy
through sudden, aggressive attacks.

Y = Xmatrabbit( t) - E | 驻Xmat( t) | - Xmat( t) (12)
where Y denoted the next move. Unlike previous
dives, which were assessed for their effectiveness, if
the move was deemed inadequate, the hawk continued
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with sudden dives. The decision鄄making process
employed a L佴vy flight distribution structure to guide
these actions.

Z = Y + S 伊 LF(D) (13)
where D was the problem size, S denoted a random
vector of size 1 伊 D, LF was the levy functions
expresses as follows:

LF(x) = 0郾 01 滋滓
| v |

1
茁

(14)

滓
é

ë

ê
ê
ê

=
祝(1 + 茁)sin 仔茁

2

(祝 1 + 茁 )2 茁 伊 2
茁 - 1

ù

û

ú
ú
ú2

1
茁

where 滋,v were random values inside (0,1), 茁 was
default constant set to 1郾 5. Therefore, the strategy for
updating the positions of hawks during the soft besiege
phase can be formulated as follows:

Xmat( t + 1) =
Y摇 (F(Y) < F(Xmat( t)))
Z摇 (F(Z) < F(Xmat( t

{ ))))
( r < 0. 5, |E |逸0. 5) (15)

Hard surround with progressive rapid dives
indicated that the hunt lacks sufficient energy. In
response, the Harris Hawks initiated a more
aggressive, forceful surround:

Y = Xmatrabbit( t) - E | 驻JXmat( t) | - Xmat( t) (16)
Z = Y + S 伊 LF(D) (17)

Xmat( t + 1) =
Y摇 (F(Y) < F(Xmat( t)))
Z摇 (F(Z) < F(Xmat( t

{ )))
( r < 0. 5, |E | < 0. 5) (18)

Noting that the coloured dots represented the
location footprints of LF鄄based patterns in one trial,
and only Y or Z would serve as the next location for the
new iteration.

To optimize the process of searching for XGBoost
hyperparameters, the HHO XGBoost procedure was
expressed as follows:

Step 1: Define the number and ranges of
parameters to be optimized. The parameters to be
optimized in XGBoost included the number of weak
learners, learning rate, number of iterations, random
undersampling ratio, column sampling ratio, and
regularization parameters 酌 and 姿. Set the upper and
lower bound arrays “ub冶 and “ lb冶 for each parameter
according to their respective value ranges.

Step 2: Use the average accuracy from cross鄄
validation of the XGBoost model as the fitness function

for the HHO algorithm.
Step 3: Initialize the population of Harris hawks

and compute the fitness values for each hawk.
Step 4: Check whether the maximum iteration

count reached. If the current iteration count exceeded
the maximum, proceed to Step 5. Otherwise, update
the positions of the hawks and continue the optimization
process by using the formulas in Equations (4 ) ~
(7).

Step 5: Output the results of the parameter
optimization.

By following these steps, the trawler fishing
behaviour recognition model based on HHO XGBoost
was obtained. The pseudo鄄code for HHO XGBoost
was provided in Algorithm 1.

Algorithm 1 摇 Pseudo鄄code of HHO XGBoost
algorithm

Inputs: The population size N and maximum number of
iterations T
摇 The upper and lower boundaries of the nine
parameters of XGBoost
Outputs: The location of the rabbit and its fitness
value.
摇 Initialize the positions of X i( i = 1,2,…,n)
while iteration t臆T do
摇 Calculate the cross鄄validation score of XGBoost as
the fitness
摇 Update bF, Xb

摇 Set Xmatrabbit as the location of rabbit
摇 for each hawk X i do
摇 摇 Update the initial energy E0 and jump strength J
摇 摇 Calculate the E by equation (9)
摇 摇 if |E | > 1 then
摇 摇 摇 Update the location vector using equation (8)
摇 摇 if |E | < 1 then
摇 摇 摇 if ( r逸0. 5, |E |逸0. 5) then
摇 摇 摇 摇 Update location vector using equation (10)
摇 摇 摇 else if ( r逸0. 5, |E | < 0. 5) then
摇 摇 摇 摇 Update location vector using equation (11)
摇 摇 摇 else if ( r < 0. 5, |E |逸0. 5) then
摇 摇 摇 摇 Update location vector using equation (15)
摇 摇 摇 else if ( r < 0. 5, |E | < 0. 5) then
摇 摇 摇 摇 Update location vector using equation (18)
Return bF and Xb
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1. 4摇 Training and Testing Phase of Classifier
The fishing behaviour of trawlers based on HHO

XGBoost was implemented by using the Python
programming language. During the training process, a
dataset consisted of 165 860 position data points from
10 randomly selected vessels was assembled, ensuring
an equal split between fishing and non鄄fishing
behaviours to maintain a balanced training sample.
Approximately one鄄fifth of this dataset was set aside as
the test set, resulting in 12 547 points for model
training and 44 314 points for testing. To obtain the
optimal hyperparameters using HHO, a five鄄fold cross鄄
validation approach was employed. Following the
completion of the training process, external validation
was conducted by using the 44 314 position points.
Several machine learning algorithms were selected for
comparison to evaluate the performance and advantages
of the HHO XGBoost algorithm.
1. 5摇 Performance Evaluation of Classifier

To evaluate the performance of the classifier of
trawler fishing behavior, four metrics[27 - 28] were
utilized, i. e. , specificity ( SP), sensitivity ( SN),
accuracy ( ACC ), and the Matthews correlation
coefficient (MCC).
1. 6摇 Fishing Effort Calculation Method

According to the calculation method proposed by
the Food and Agriculture Organization of the United
Nations, fishing effort is typically expressed in terms of
engine power and fishing operation days
(kW·d) [29 - 30] . The method for calculating fishing
effort was adopted from references [29, 31], with time
measured in hours, and fishing effort quantified in
kW·h. When a trawler was engaged in fishing
activities, assuming the study area could be divided
into grids, the formula for calculating fishing effort
within each study grid was as follows:

E = 移
S

s = 0
移

I

i = 0
移
N

n = 0
(Ti,m,n,s - Ti,m - 1,n,s)WiP i,m,n,s

(19)
where m represented a position in a grid for a specific
trawler, Ti,m and Ti,m - 1 denoted the time at consecutive
points along the trajectory of trawler i, Wi denoted the
engine power of the trawler i, P i,m represented the
operational status of trawler i at position m at Ti,m, N
indicated the number of positions for trawler i in the
specific grid, I represented the number of trawler in

the s鄄th grid, S denoted the number of grids, and E
signified the total fishing effort within the study area.

2摇 Results

2郾 1摇 Evaluation of HHO XGBoost Based Fishing
Behavior Recognition

During the training of the HHO XGBoost
classifier, the HHO algorithm parameters were
configured with a population size of 50 and an epoch of
20. With this configuration, HHO XGBoost
completed the training process and identified the
optimal parameter combination, which included a
learning rate of 0郾 096 8, 443 estimators, a subsample
rate of 0郾 834 4, a colsample_bytree of 0郾 734 2, and a
seed of 734. After determining these optimal
parameters, model testing was conducted, and the final
test results were summarized in Tab. 1.

Tab. 1摇 Comparison of precision rate of machine鄄
learning classifiers

Methods ACC MCC SN SP
ELM 0郾 922 1 0郾 845 7 0郾 890 0 0郾 953 4
RF 0郾 971 1 0郾 942 2 0郾 981 8 0郾 961 9
LightGBM 0郾 970 0 0郾 939 8 0郾 976 5 0郾 964 3
XGBoost 0郾 970 9 0郾 941 8 0郾 979 6 0郾 963 4
HHO XGBoost 0郾 971 3 0郾 942 5 0郾 980 6 0郾 963 2

摇 摇 The test set used in the experiment was collected
from new trawlers that were not involved in the training
phase. This dataset consisted of 20 489 fishing position
points and 23 825 non鄄fishing position points, was
specifically designed to evaluate the generalizability of
the proposed model. The experimental results
demonstrated that the HHO XGBoost model
outperformed other ensemble learning algorithms,
including Extreme Learning Machine (ELM), Random
Forest (RF), and LightGBM. Compared with ELM,
RF, and LightGBM, HHO XGBoost correctly
identified 1,176, 7 and 57 additional samples in the
test set, respectively. Furthermore, when compared
with XGBoost trained with empirical parameters and
XGBoost optimized by using the Genetic Algorithm
(GA), HHO XGBoost correctly identified 15 and 6
more samples, respectively. These results strongly
supported the effectiveness of the proposed algorithm,
through its innovative optimization process,
significantly improved the performance in recognizing
trawler fishing behaviour.
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To further enhance the precision of fishing
behaviour recognition, three strategieswere proposed.
Firstly, feature enhancement was recommended.
Considering that vessels often operated in fleets, with
multiple trawlers working in pairs, integrating
spatiotemporal information between vessels could refine
the identification of fishing operation characteristics.
Secondly, further algorithm optimization was
suggested, potentially incorporating additional
optimization techniques. However, the overall
complexity of the model should be carefully
considered. Lastly, expanding the data samples was
essential for improving model performance.
Continuously updating the dataset with data from
various fishing vessels and extending the sample period
would increase the model蒺s accuracy and robustness.
2. 2摇 Estimating Spatiotemporal Fishing Effort

The fishing behaviour of trawlers in Shandong
Province was recognizedby using the HHO XGBoost
classifier, and the fishing effort for the entire year of
2021 was subsequently calculated, as illustrated in
Fig. 2.

Fig. 2摇 Distribution of fishing effort of trawlers
in Shandong Province in 2021

摇
The analysis of Fig. 2 revealed that the majority of

fishing effort was concentrated in two specific regions:
淤 The first region, spanning from 121郾 1毅E to 124毅E
and from 35郾 7毅 N to 38郾 7毅 N, accounting for
387 963 366郾 6 kW·h of fishing effort, representing
approximately 48郾 98% of the total recorded fishing
effort within the surveyed area. This area is primarily
located within the Yantai Weihai and Shidao Fishing
Grounds, is a key fishing area for trawlers in Shandong
Province. 于 The second area of focus, extending from
119郾 8毅E to 122郾 8毅 E and from 33郾 6毅 N to 35郾 4毅 N,
contributed roughly 17郾 46% of the total fishing effort

recorded in the region, with concentrations in the
Haizhou Bay Fishing Ground and the southwestern
sectors of the Lianqingshi Fishing Ground.

To provide a clear understanding of the
spatiotemporal distribution of fishing efforts by trawlers
in Shandong Province, monthly hotspot maps
illustrating the distribution of fishing efforts during the
non鄄fishing closed season was presented, as shown in
Fig. 3.

As illustrated in Fig. 3, in January 2021, the
fishing effort of trawlers in Shandong Province was
predominantly concentrated in two areas: 123毅 E to
124毅E, 32郾 8毅N to 36郾 7毅N, and 121郾 4毅E to 122郾 8毅E,
34郾 1毅 N to 35郾 8毅 N, both of which were relatively
distant from the coastline. By February, overall fishing
effort showed a downward trend, with hotspots
becoming more concentrated around 123毅E to 124毅E,
33郾 1毅N to 36郾 8毅N. This shift may be attributed to the
Spring Festival, during which some fishermen returned
home for the holiday, while others ventured further
offshore for trawling.

In March, the distribution of fishing effort
expanded, exhibiting a more diffuse pattern and an
increase in overall fishing activity. The primary
concentration of fishing effort shifted to 122郾 5毅 E to
124毅 E, 33毅 N to 35郾 9毅 N. By April, fishing effort
remained stable compared with March but became more
widely dispersed, gradually moving closer to the
coastline. Key fishing areas were located at 122毅E to
124毅E, 33郾 5毅N to 37郾 5毅N, and 119郾 4毅E to 120郾 8毅E,
34郾 8毅N to 35郾 7毅N. This redistribution may be linked
to the approaching fishing closed season, prompting
trawlers to return to their home ports.

After September 2021, a notable increase in
fishing activity occurred as a significant number of
trawlers ventured offshore, resulting in fishing efforts
that were two orders of magnitude higher than those
observed during the first half of the year. Primary
fishing activities were concentrated in the Yantai
Weihai Fishing Ground and Haizhou Bay Fishing
Ground, located closer to the coast at 121郾 3毅E to 124毅E,
35郾 5毅N to 38郾 7毅N and 120毅E to 122郾 5毅E, 33郾 5毅N to
35郾 5毅N, respectively. Despite minimal fluctuations in
fishing effort was between September and October, the
spatial distribution became increasingly focused within
these fishing grounds, with a significant uptick in

925第 2 期摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 李丹 等: 基于船舶监测系统数据的拖网渔船捕捞努力量估算



Fig. 3摇 Monthly distributions of fishing effort of trawlers in Shandong Province
摇

fishing activities. Together, September and October
accounted for the majority of the annual fishing effort.

In November, compared with October, the
distribution of fishing efforts expanded further into
deeper water, with a prominent concentration in the
Yanwei Fishing Ground. By December, the fishing
effort hotspots shifted even farther offshore, primarily
concentrated in the central Yellow Sea at 121郾 5毅E to
124毅E, 34毅 N to 37毅 N, covering the Shidao Fishing
Ground and Lianqingshi Fishing Ground. This shift
indicated a growing trend of trawlers targeting deeper
waters as the fishing season progressed.

3摇 Conclusion

(1 ) A novel algorithm, HHO XGBoost, was
introduced for the recognition of fishing behaviour in
trawlers, and leveraging data from over 3 600 trawlers
in 2021 was used to calculate fishing effort and
摇 摇 摇 摇

estimate its spatiotemporal distribution. The proposed
method demonstrated outstanding generalization
capability, achieving high performance metrics in terms
of accuracy ( 0郾 971 3 ), sensitivity ( 0郾 980 6 ),
specificity ( 0郾 963 2 ), and Matthews correlation
coefficient (0郾 942 5) in the test phase.

(2) The spatial distribution of fishing effort was
predominantly concentrated in two key areas: 121郾 1毅E to
124毅E, 35郾 7毅N to 38郾 7毅N, and 119郾 8毅E to 122郾 8毅E,
33郾 6毅N to 35郾 4毅N. These areas were primarily located
within the Yantai Weihai Fishing Ground, Shidao
Fishing Ground, Haizhou Bay Fishing Ground, and
Lianqingshi Fishing Ground.

(3) To further enhance the accuracy of fishing
behaviour recognition, future efforts should focus on
feature enhancement, algorithm optimization, and data
expansion. These strategies held substantial potential to
further elevate the precision of the model.
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基于船舶监测系统数据的拖网渔船捕捞努力量估算

李摇 丹1 摇 鲁摇 峰1,2 摇 徐摇 硕1,2 摇 王摇 宇1,2 摇 薛沐涵1 摇 倪翰晨1 摇 方摇 辉2,3

张摇 漫4 摇 马振华5 摇 陈作志5 摇 许摇 建1

(1. 中国水产科学研究院渔业工程研究所, 北京 100141; 2. 崂山实验室, 青岛 266237;
3. 中国水产科学研究院东海水产研究所, 上海 200090; 4. 中国农业大学信息与电气工程学院, 北京 100083;

5. 中国水产科学研究院南海水产研究所, 广州 510300)

摘要: 拖网渔船捕捞努力量的估算对于描述海洋渔业活动、量化拖网作业对海洋造成的生态压力以及修订渔业法

规和政策具有重要意义。 明确拖网渔船的捕捞投入可为中国近海渔业资源的可持续发展提供科学数据支持。 本

研究提出了一种基于 Harris Hawks Optimization(HHO)优化的 XGBoost 算法,用于构建拖网渔船捕捞行为识别模

型。 结果表明,该模型准确率、灵敏度、特异度和马修斯相关系数分别为 0郾 971 3、0郾 980 6、0郾 963 2 和 0郾 942 5。 利用

该模型识别拖网渔船的捕捞行为并计算了 2021 年在 119毅E ~ 124毅E、32毅N ~ 40毅N 海域内山东省拖网渔船的捕捞努

力量。 以空间精度 1 / 8毅生成了捕捞努力量热力图,计算结果揭示了捕捞活动的空间分布主要集中在 2 个关键区

域:121郾 1毅E ~ 124毅E、35郾 7毅N ~ 38郾 7毅N 和 119郾 8毅E ~ 122郾 8毅E、33郾 6毅N ~ 35郾 4毅N。 本研究可为渔业资源的定量评估

奠定基础,为海洋捕捞渔业的可持续发展提供必要数据。
关键词: 拖网渔船; 船位数据; 机器学习; 捕捞努力量
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