doi:10.6041/j.issn.1000-1298.2018.04.040

基于 JKR 粘结模型的蚯蚓粪基质离散元法参数标定

罗 帅^{1,2} 袁巧霞^{1,2} GOUDA Shaban^{1,3} 杨龙元^{1,2}

(1.华中农业大学工学院,武汉 430070; 2.农业部长江中下游农业装备重点实验室,武汉 430070;3.本哈大学农学院,本哈 13736)

摘要:为确定不同含水率下蚯蚓粪基质的多种参数,提出了通过测定基质含水率,预测休止角,通过休止角合理推测其他参数的思路,并提出了一种散体休止角测定方法。以休止角作为参照,基于 JKR 粘结模型,使用离散元参数标定的方法,从与蚯蚓粪基质颗粒有关的 10 个参数中,筛选出颗粒间静摩擦因数、颗粒间滚动摩擦因数和 JKR 表面能 3 个对休止角影响显著的参数,建立了休止角与这 3 个显著参数之间的二次多项式回归模型。试验结果表明,该模型可以根据休止角预测蚯蚓粪基质参数,根据预测得到的参数建立离散元模型,休止角仿真结果与实际试验结果较为接近,差异分别为 1.53% 和 0.22%。同时测定了不同含水率下蚯蚓粪基质的休止角,建立了休止角与含水率之间的关系模型。研究结果可为其他类似散体物料休止角的测定提供参考,并提供了一种通过测定易于测定的参数(如含水率)来推导其他难测参数的思路。

关键词:蚯蚓粪基质;离散元法;参数标定;休止角

中图分类号: S152.9; X713 文献标识码: A 文章编号: 1000-1298(2018)04-0343-08

Parameters Calibration of Vermicomposting Nursery Substrate with Discrete Element Method Based on JKR Contact Model

LUO Shuai^{1,2} YUAN Qiaoxia^{1,2} GOUDA Shaban^{1,3} YANG Longyuan^{1,2}

(1. College of Engineering, Huazhong Agricultural University, Wuhan 430070, China

Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture, Wuhan 430070, China
 Faculty of Agriculture, Benha University, Benha 13736, Egypt)

Abstract: The angle of repose (AoR) is one of the most important macroscopic parameters in characterizing the behavior of vermicomposting nursery substrate. It is strongly depended on the material properties, such as moisture content, particle density, sliding and rolling frictions of particles, particle size and shape. A simulation and experimental study was presented to determine the AoR of vermicomposting nursery substrate under different moisture contents, and the other parameters such as sliding and rolling frictions were investigated. The simulation model was performed by discrete element method (DEM). An AoR measuring instrument was designed. The outline of the accumulation body was obtained by digital image analysis (DIA) method, and fitted with the Gaussian distribution formula to fit the AoR. The Plackett - Burman test was used to select the experimental factors with significant effect on the results. Based on the JKR contact model, the coefficient of static friction between the particles, the coefficient of rolling friction between the particles and the surface energy of JKR were represented from the parameters related to vermicomposting nursery substrate particles. The Box - Behnken test was carried out to obtain the regression model between the AoR and the significant parameters. Quadratic polynomial regression model between AoR and the three significant parameters was established. The comparison between the more common linear fitting model and the exponential fitting model proposed was carried out. The experimental results showed that the model can predict the vermicomposting nursery substrate parameters based on the AoR. The simulation results were compared with the experimental

收稿日期: 2017-10-12 修回日期: 2017-11-09

基金项目:公益性行业(农业)科研专项基金项目(201303091)、华中农业大学创新基金项目(2662016PY108)和中央高校基本科研业务费 专项资金项目(2015PY077)

作者简介:罗帅(1991—),男,博士生,主要从事农业废弃物资源化利用研究,E-mail: suaiy@ outlook.com

通信作者:袁巧霞(1963一),女,教授,博士生导师,主要从事农业废弃物资源化利用研究, E-mail: qxyuan@mail.hzau.edu.cn

measurements, and the results of AoR agreed with the actual results, where the difference was 1.53% and 0.22%, respectively. Also, the exponential fitting model was more accurate. Finally, the research results can provide a reference for the determination of AoR of other bulk materials and provide a way to derive other unpredictable parameters by measuring readily measured parameters such as moisture content.

Key words: vermicomposting nursery substrate; discrete element method; parameters calibration; angle of repose

0 引言

蚯蚓堆肥是处理畜禽粪便的有效方式^[1],经过 蚯蚓过腹处理的禽畜粪便具有良好的孔隙特性和丰 富的营养物质,成为优良的作物育苗和栽培基质,即 蚯蚓粪基质。蚯蚓堆肥在禽畜粪便的综合利用中效 果显著,逐渐成为研究的热点^[2]。但目前蚯蚓堆肥 过程中从布料、取料、蚓粪分离到蚯蚓粪基质的应 用,基本上靠人工进行,大量人工成本已成为制约蚯 蚓堆肥的主要因素,因此需研究蚯蚓堆肥处理及蚓 粪利用相关设备。而研发其设备,就应该对蚯蚓粪 基质相关特性进行充分了解。

蚯蚓粪基质是一种典型的散体物料,离散元法 (Discrete element method, DEM)被广泛用于这些散 体物料特性的研究^[3-5]。JKR 颗粒粘结模型是由 JOHNSON 等^[6]于 1971 年提出并以 JOHNSON、 KENDALL 和 ROBERTS 等的名字命名的模型,该模 型引入了颗粒间表面能(Surface energy)的概念,适 用于模拟细小和潮湿材料颗粒间的黏聚作用。JKR 粘结模型自被提出以来,已经被许多学者引入到不 同散体颗粒间的相互作用模型中,如黄豆和槭树残 渣的混合搅拌运动的数值模拟^[7]、型砂的流动性仿 真模拟^[8]、土壤堆积的数值模拟^[9]、煤粉和生物质 混合物休止角的推导^[10]等,这些研究模拟结果和试 验结果均较为吻合。

休止角(Angle of repose, AoR)作为散体物料的 一种固有属性,与散体物料颗粒本身的各种属性息 息相关,常被用于散体物料颗粒参数标定^[11-14]。蚯 蚓粪基质含水率变化时,其物理参数也会发生变化, 这些变化可以通过休止角的变化来体现。

本文在对国内外散体物料参数标定和休止角测 定方法进行总结的基础上,结合蚯蚓粪基质堆积体 实际轮廓,提出一种休止角测定方法,基于 JKR 粘 结模型进行蚯蚓粪基质的离散元法参数标定,设计 休止角测定仪并通过试验测定不同含水率下蚯蚓粪 基质的休止角,得到蚯蚓粪基质颗粒含水率与休止 角之间的关系。通过测定蚯蚓粪基质含水率来预测 其休止角,继而合理推定蚯蚓粪基质颗粒间滚动摩 擦因数等其他参数。

1 材料与方法

1.1 试验材料

试验中所用的蚯蚓粪基质原料取自武汉市东西 湖区新沟镇蚯蚓养殖基地,以牛粪为主要原料,经大 平2号蚯蚓过腹处理,充分腐熟后得到可以用于植 物育苗的蚯蚓粪基质原料。基质颗粒近似为球体。 考虑蚯蚓粪基质实际应用时的处理方法,试验时将 蚯蚓粪基质进行粉碎处理,全部通过孔径为2 mm 的标准筛(浙江上虞市五四仪器厂生产),以满足育 苗钵成型试验粒径要求。蚯蚓粪基质原料 pH 值为 5.89,电导率为0.22 mS/cm。

在不同含水率下休止角的测定试验中,将蚯 蚓粪基质在遮荫条件下自然风干,使蚯蚓粪基质 含水率缓慢下降,不定时取样分别测定休止角与 含水率。

1.2 试验设备

参考目前广泛使用的休止角测定方法,设计了 图1所示的钢质休止角测试仪。落料漏斗由高度调 节螺杆上的螺母限制与堆积底座间的高度差。试验中 设置漏斗出料口与堆积底座上表面距离为150mm。堆 积底座上端为直径150mm的圆板。试验时,漏斗 中的蚯蚓粪基质颗粒经漏斗口落于堆积底座上,在 侧面对堆积体进行拍照,对照片进行处理以获取蚯 蚓粪基质颗粒的休止角。

图 1 休止角测试仪 Fig. 1 AoR determination instrument 1. 落料漏斗 2. 高度调节螺杆 3. 堆积底座

1.3 离散元模型

为缩短数值模拟时间,需要对模型进行适当的 简化。将休止角测定仪仅保留漏斗口和堆积底座, 得到其简化模型(图 2a)。经观察,蚯蚓粪基质颗粒 大部分为近似的球体(图 2b),因此以半径为 1 mm 的球体为颗粒原型(图 2c),同时在生成颗粒时,将 原型颗粒半径变化范围设置为满足平均值,标准差 为 0.1 mm 的标准正态分布,得到蚯蚓粪基质颗粒 的离散元简化模型。

综合考虑数值模拟的效率和准确性,时间步长 通常设置为雷利时间步长的5%~40%,本文在模 拟中视雷利时间步长的具体值,设置时间步长为雷 利时间步长的5%~15%。为保证仿真结果的准确 性,网格尺寸设置为最小颗粒半径的2倍。颗粒生 成后经漏斗口落于堆积底座上自然堆积,仿真时间 统一设置为3s。

JKR 颗粒粘结模型将表面能引入颗粒间的相互 作用,其简化模型如图 3 所示。

Fig. 3 JKR contact model

1.4 休止角测定方法

休止角测定较广泛的方法主要有两种。一种方法是通过颗粒体高度 H 与底面直径 D 来计算休止角,即休止角

$$\theta = \arctan \frac{2H}{D} \tag{1}$$

此种方法目前应用最为广泛^[15-17],但由于颗粒 位置的不规则性,堆积体底面边缘较分散,不是连续 的圆面,不便于度量;且堆积体顶端往往也不是规则 的锥形,堆积体高度 H 难于确定。有研究者^[18]提出 将包含 95% 颗粒数目的圆作为堆积体底面边界圆, 以该圆直径作为休止角底面直径。该方法在数值模 拟中可行,但实际操作中难以找到边界圆。

另一种方法是选取堆积体轮廓中较为平直的一 段曲线,以与该段曲线最接近的直线倾角作为该颗 粒堆积体休止角。目前此方法主要用数字化图像分 析(Digital image analysis, DIA)来实现, 王云霞等^[19] 在对玉米种子休止角提取时用直线拟合堆积体轮廓 线。但是由于所取曲线段的位置因人而异, 此种方 法结果受人为影响较大。FRACZEK 等^[20]在研究中 亦指出了该方法的这一弊端。

观察蚯蚓基质堆积体和文献中其他散体物料堆 积体的实际形状,发现大多数散体物料堆积体两端 轮廓线近似为水平距离的凹函数,居中轮廓线近似 为凸函数,而坡体中间段近似为直线。据此,拟采用 高斯分布拟合堆积体轮廓线来获取堆积体休止角。 主要思路是通过图像处理提取堆积体的轮廓点坐标 后用高斯分布进行拟合,以拟合曲线拐点处的切线 与水平轴的夹角为堆积体的休止角。其具体方法 是,通过相机对颗粒堆积体进行拍照,得到图 4a;通 过 Photoshop 软件快速选择提取堆积体轮廓并对图 片角度进行校正,得到图 4b;通过 Matlab 软件将所 获得的图像依次进行灰度处理(图4c)、二值化处理 (图 4d),再通过 Photoshop 软件描边工具提取轮廓 曲线(图 4e);最后将图像导入 Origin 软件通过图片 文件数字化工具 Digitizer 获取轮廓点坐标,用高斯 分布对其进行拟合(图 4f)。图像处理的思路参考 了 FADAVI 等^[21]种子轮廓处理的方法。

高斯分布的一般方程为

$$f(x) = y_0 + \frac{A}{w\sqrt{\frac{\pi}{2}}} e^{-2\frac{(x-x_c)^2}{w^2}}$$
(2)

式中 $y_0 A w_x_c$ —常数

本文定义拟合方程拐点处切线与 x 轴所夹锐角 为该散体的休止角。

对式(2)进行求导,分别求其一阶和二阶导数

$$f'(x) = \frac{-4A}{w^3 \sqrt{\frac{\pi}{2}}} (x - x_c) e^{-2\frac{(x - x_c)^2}{w^2}}$$
(3)

图 4 蚯蚓粪基质休止角的计算过程

 $f''(x) = \frac{-4A}{w^5 \sqrt{\frac{\pi}{2}}} \left[w^2 - 4 (x - x_c)^2 \right] e^{-2\frac{(x - x_c)^2}{w^2}}$ (4)

曲线的拐点出现在二阶导数为零处,于是令 f''(x) = 0,式(4)有2个解

$$x = x_c \pm \frac{w}{2} \tag{5}$$

将式(5)代入式(3),即可得到拐点处的斜率

$$S_{l} = \pm \frac{4A}{w^{2}\sqrt{2e\pi}} \tag{6}$$

则休止角的计算公式为

$$\theta = \arctan|S_l| \tag{7}$$

休止角测定试验在华中农业大学工科基地温室 大棚进行。试验中,基质在遮荫下自然风干。不定 时取样测定休止角,每次测定重复3次;同时另取样 测定含水率。

1.5 参数标定试验设计

针对蚯蚓粪基质的研究目前尚不完善,其离 散元模型的参数尤其缺乏。考虑到蚯蚓粪基质物 理性质与土壤较为接近,且含水率变化时其泊松 比、剪切模量等参数均会发生变化,本文主要参照 文献[22-29]中各类土壤的参数值确定试验中各 参数的取值或范围。表1给出了各待标定参数的 高低水平。

其他参数^[27]为钢泊松比 0.3、钢剪切模量7.9× 10¹⁰ Pa、钢 的 密 度 7 865 kg/m³、重 力 加 速 度 9.81 m/s²。

本文试验参数较多,参照文献[30-31]的试验 设计,先进行 Plackett – Burman 试验,筛选出对结果 影响显著的试验因素,再进行 Box – Behnken 试验, 得到休止角和显著性参数之间的回归模型。通过测 定不同含水率下蚯蚓粪基质的休止角,得到休止角

表1 离散元法参数标定试验标定参数

随含水率变化的关系曲线。

Tab.1 DEM calibration parameters need to be calibrated

in experiment

参数	低水平	高水平
颗粒泊松比	0.1	0.5
颗粒剪切模量/MPa	1	10
颗粒密度/(kg·m ⁻³)	2 000	3 000
颗粒−颗粒碰撞恢复系数	0.1	0.6
颗粒颗粒静摩擦因数	0.3	1
颗粒-颗粒滚动摩擦因数	0.1	0.5
颗粒−钢碰撞恢复系数	0.1	0.6
颗粒-钢静摩擦因数	0.2	0.6
颗粒−钢滚动摩擦因数	0.1	0.5
JKR 表面能/(J·m ⁻²)	3.5	10.5

2 结果与分析

2.1 Plackett – Burman 试验

表 2 是使用 Minitab 设计的 Plackett - Burman 试验及试验所得休止角。

表3给出了由 Plackett – Burman 试验得出的参数显著性分析数据。根据试验结果,颗粒间静摩擦因数、颗粒间滚动摩擦因数、JKR 表面能对休止角的影响是显著的,其他参数影响较小。

2.2 Box – Behnken 试验

根据 Plackett - Burman 试验的结果,进行 Box - Behnken 试验,以得到休止角与 3 个显著参数之间的关系模型。

表 4 是 Minitab 设计的 Box – Behnken 试验及试验所得休止角。重点考察颗粒–颗粒静摩擦因数(A)、颗粒–颗粒滚动摩擦因数(B)和 JKR 表面能(C)这3个对休止角影响显著的参数。使用 Minitab

表	2 Place	kett – Buri	nan 试验设计	⁻及结果	
Tab. 2	Design a	nd results	of Plackett -	Burman	test

- -

- -

_ _

			 「「「「」」 「」 「」 「」 「」 「」 「」 「」 「」 「」 「」 「」	颗粒颗粒	颗粒颗粒	颗粒颗粒	颗粒−钢	颗粒−钢	颗粒−钢	JKR	休止鱼/
运行序	初北山	秋枢労切 描具/MD-	秋型笛皮/ (1 -3)	碰撞恢复	静摩擦	动摩擦	碰撞恢复	静摩擦	动摩擦	表面能/	/小⊥⊥用/
	伯松比	侠 里/ Mra	(kg·m)	系数	因数	因数	系数	因数	因数	$(J \cdot m^{-2})$	()
1	0.5	1	2 000	0.1	0.3	0.5	0.1	0.6	0.1	3.5	54.04
2	0.5	10	2 000	0.1	0.3	0.1	0.6	0.2	0.5	3.5	0
3	0.5	10	3 000	0.1	0.3	0.1	0.1	0.6	0.1	10.5	81.44
4	0.5	10	3 000	0.6	0.3	0.1	0.1	0.2	0.5	3.5	0
5	0.5	10	3 000	0.6	1.0	0.1	0.1	0.2	0.1	10.5	54.00
6	0.1	10	3 000	0.6	1.0	0.5	0.1	0.2	0.1	3.5	54.18
7	0.5	1	3 000	0.6	1.0	0.5	0.6	0.2	0.1	3.5	84.80
8	0.1	10	2 000	0.6	1.0	0.5	0.6	0.6	0.1	3.5	62.42
9	0.5	1	3 000	0.1	1.0	0.5	0.6	0.6	0.5	3.5	50.87
10	0.5	10	2 000	0.6	0.3	0.5	0.6	0.6	0.5	10.5	84.61
11	0.1	10	3 000	0.1	1.0	0.1	0.6	0.6	0.5	10.5	83.09
12	0.1	1	3 000	0.6	0.3	0.5	0.1	0.6	0.5	10.5	85.90
13	0.5	1	2 000	0.6	1.0	0.1	0.6	0.2	0.5	10.5	82.25
14	0.5	10	2 000	0.1	1.0	0.5	0.1	0.6	0.1	10.5	86.03
15	0.1	10	3 000	0.1	0.3	0.5	0.6	0.2	0.5	3.5	53.86
16	0.1	1	3 000	0.6	0.3	0.1	0.6	0.6	0.1	10.5	81.92
17	0.5	1	2 000	0.6	1.0	0.1	0.1	0.6	0.5	3.5	40.18
18	0.1	10	2 000	0.1	1.0	0.5	0.1	0.2	0.5	10.5	85.36
19	0.5	1	3 000	0.1	0.3	0.5	0.6	0.2	0.1	10.5	83.63
20	0.1	10	2 000	0.6	0.3	0.1	0.6	0.6	0.1	3.5	40.93
21	0.1	1	3 000	0.1	1.0	0.1	0.1	0.6	0.5	3.5	81.66
22	0.1	1	2 000	0.6	0.3	0.5	0.1	0.2	0.5	10.5	87.16
23	0.1	1	2 000	0.1	1.0	0.1	0.6	0.2	0.1	10.5	82.30
24	0.1	1	2 000	0.1	0.3	0.1	0.1	0.2	0.1	3.5	19.90
25	0.3	5.5	2 500	0.35	0.65	0.3	0.35	0.4	0.3	7.0	75.09

表 3 Plackett – Burman 试验参数显著性分析

Tab. 3	Analysis	of s	significance	of	parameters	in	ı
--------	----------	------	--------------	----	------------	----	---

Plackett – Burman test

模型变量	效应	系数	Р	置信度/%
常数项		63.36	0	
颗粒泊松比	-9.74	-4.87	0.133	16.35
颗粒剪切模量	- 12. 39	- 6. 2	0.062	6.73
颗粒密度	5.85	2.92	0.353	54.81
颗粒−颗粒碰撞恢复系数	- 0. 32	-0.16	0.959	35.58
颗粒−颗粒静摩擦因数	14.48	7.24	0.033	74.04
颗粒-颗粒滚动摩擦因数	18.77	9.38	0.009	83.65
颗粒−钢碰撞恢复系数	5.07	2.53	0.419	45.19
颗粒-钢静摩擦因数	12.14	6.07	0.067	64.42
颗粒−钢滚动摩擦因数	-4.22	-2.11	0. 499	25.96
JKR 表面能	36.24	18.12	< 0.001	93.27

软件建立休止角与3个显著参数间的二次多项式回 归方程

 $\theta = 10. \ 39 + 3. \ 66A + 115. \ 01B + 30. \ 447C - 6. \ 34A^2 - 56. \ 31B^2 - 3. \ 477C^2 + 2. \ 17AB + 1. \ 632AC - 22. \ 25BC \ (8)$

模型决定系数 R²为 0.999 3,校正决定系数 R²_{Adj}

表 4 Box – Behnken 试验设计及结果

Tab. 4	Design	and	results	of	Box –	Beł	nnken	te	st
						2			

运行序	A	В	$C/(\mathbf{J} \cdot \mathbf{m}^{-2})$	休止角/(°)
1	0.3	0.1	2.0	65.34
2	1.0	0.1	2.0	64.72
3	0.3	0.5	2.0	80.32
4	1.0	0.5	2.0	80.31
5	0.3	0.3	0.5	52.17
6	1.0	0.3	0.5	49.83
7	0.3	0.3	3.5	82.66
8	1.0	0.3	3.5	83.75
9	0.65	0.1	0.5	34.67
10	0.65	0.5	0.5	63.25
11	0.65	0.1	3.5	81.36
12	0.65	0.5	3.5	83.23
13	0.65	0.3	2.0	76.57
14	0.65	0.3	2.0	74.90
15	0.65	0.3	2.0	75.64

为 0.998 1,均接近于 1。表 5 是该模型方差分析的 结果。模型的 P 值小于 0.000 1,极为显著;失拟项 的 P 值大于 0.05,对结果不显著。模型拟合较好, 可靠度较高,可以用来预测休止角。

表 5 Box – Behnken 试验休止角二次多项式回归模型

方差分析

Tab. 5Box – Behnken test AoR corner quadraticpolynomial regression model variance analysis

来源	自由度	SS_{Adj}	MS_{Adj}	F	Р
模型	9	3 031.16	0.44	811.54	< 0.0001
A	1	0.44	465.46	1.06	0.3504
В	1	465.46	2 147.88	1 121.58	< 0.0001
С	1	2 147.88	0.44	5 175.56	< 0.0001
A^2	1	2.23	2.23	5.37	0.068 2
B^2	1	18.73	18.73	45.14	0.0011
C^2	1	226.04	226.04	544.67	< 0.0001
AB	1	0.09	0.09	0.22	0.6568
AC	1	2.94	2.94	7.08	0.044 9
BC	1	178.17	178.17	429.32	< 0.0001
误差	5	2.08	0.42		
失拟项	3	0.69	0.23	0.33	0.8093
纯误差	2	1.39	0.69		
合计	14	3 033. 23			

为验证模型的有效性,在休止角测定试验中随 机选取了2组试验结果(休止角分别为43.05°和 36.38°(图5)),应用 Minitab 的响应优化器工具,在 试验参数的取值范围内以休止角分别对回归模型进 行寻找最优解,使用最优解进行离散元模拟,模拟所 得休止角分别为43.71°和36.46°,均接近于实际休 止角,差异分别为1.53%和0.22%。模拟结果与试 验结果差别均较小,认为模型是有效的。最优解分 别为颗粒间静摩擦因数为1.00,颗粒间滚动摩擦因 数为0.11,JKR 表面能为0.89 J/m²;颗粒间静摩擦 因数为0.65,颗粒间滚动摩擦因数为0.12,JKR 表 面能为0.5 J/m²。

2.3 含水率与休止角关系试验

不同含水率下基质的休止角变化如图 6 所示。 蚯蚓粪基质的休止角随含水率的降低而降低,这与 其他物料^[17,32]的研究结果相似。目前,研究 者^[33-34]一般将散体含水率和休止角之间的关系用 线性来描述。但是由蚯蚓粪基质休止角随含水率 变化的散点图可以发现,随含水率降低,休止角减小的速率有放慢的趋势。本文分别用直线和指数函数 对散点图进行拟合,得到拟合方程

$$\theta_{l} = 19.84802C_{m} + 30.80868 \quad (R^{2} = 0.91) \quad (9)$$

$$\theta_{e} = 0.48461e^{\frac{C_{m}}{0.18764}} + 33.87734 \quad (R^{2} = 0.97)$$

(10)

指数方程式(10) 拟合度更优,更符合两者之间 的变化趋势。对于蚯蚓粪基质的休止角,可以测定 其含水率,根据式(10) 计算预测得到其休止角。

图 6 蚯蚓粪基质含水率和休止角的关系曲线 Fig. 6 Relationship curves between vermicomposting nurserv substrate moisture content and AoR

3 结论

(1)提出了一种散体颗粒休止角获取方法,即 提取堆积体轮廓,用高斯分布对轮廓曲线进行拟 合,以拟合曲线拐点的倾角作为休止角。试验表 明,该方法拟合效果良好,为堆积体轮廓与蚯蚓粪 基质相似的散体的休止角的测定提供了一种 思路。

(2)将 JKR 粘结模型用于蚯蚓粪基质颗粒,采 用离散元法对蚯蚓粪基质颗粒参数进行标定试验, 筛选出对休止角影响显著的参数(即颗粒间静摩擦 因数、颗粒间滚动摩擦因数、JKR 表面能),在此基 础上对休止角试验数据进行二次多项式回归分析, 建立了休止角与3个显著参数间的回归模型。经试 验验证,模型结果与试验结果较为吻合。

(3)测定不同含水率下蚯蚓粪基质颗粒的休止 角,建立了含水率与休止角之间的指数函数,对比发 现较传统的直线拟合效果更优。由此函数及休止角 与3个显著参数之间的回归模型,可以通过测定蚯 蚓粪基质含水率、预测休止角,继而合理推定颗粒间 静摩擦因数、颗粒间滚动摩擦因数、JKR 表面能等其 他参数。

参考文献

- 2 HUANG K, XIA H. Role of earthworms' mucus in vermicomposting system: biodegradation tests based on humification and microbial activity[J]. Science of the Total Environment, 2018, 610: 703 708.
- 3 ANAND A, CURTIS J S, WASSGREN C R, et al. Experimental study of wet cohesive particles discharging from a rectangular hopper[J]. Industrial & Engineering Chemistry Research, 2015, 54(16): 4545 4551.
- 4 BRIEND R, RADZISZEWSKI P, PASINI D. Virtual soil calibration for wheel-soil interaction simulations using the discreteelement method[J]. Canadian Aeronautics and Space Journal, 2011, 57(1): 59-64.
- 5 刘凡一,张舰,李博,等. 基于堆积试验的小麦离散元参数分析及标定[J]. 农业工程学报,2016,32(12):247-253. LIU Fanyi, ZHANG Jian, LI Bo, et al. Calibration of parameters of wheat required in discrete element method simulation based on repose angle of particle heap[J]. Transactions of the CSAE, 2016, 32(12): 247-253. (in Chinese)
- 6 JOHNSON K L, KENDALL K, ROBERTS A D. Surface energy and the contact of elastic solids [J]. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, 1971, 324(1558):301-313.
- 7 CUNHA R N, SANTOS K G, LIMA R N, et al. Repose angle of monoparticles and binary mixture: an experimental and simulation study[J]. Powder Technology, 2016, 303: 203 211.
- 8 张帅,单忠德,张杰.基于离散元方法的型砂流动性仿真研究[J].铸造技术,2016,37(2):288-291. ZHANG Shuai, SHAN Zhongde, ZHANG Jie. Simulation of self-hardening resin sand mobility based on DEM[J]. Foundry Technology, 2016, 37(2):288-291. (in Chinese)
- 9 胡红. 玉米行间定点扎穴深施追肥机设计与研究[D]. 北京:中国农业大学, 2017. HU Hong. Design and research of targeted hole-pricking and deep-application fertilizer between maize rows [D]. Beijing: China Agricultural University, 2017. (in Chinese)
- 10 GUO Z, CHEN X, LIU H, et al. Theoretical and experimental investigation on angle of repose of biomass-coal blends [J]. Fuel, 2014, 116(1): 131-139.
- 11 GHAZAVI M, HOSSEINI M, MOLLANOURI M. A comparison between angle of repose and friction angle of sand[C] // The 12th International Conference for International Association for Computer Methods and Advances in Geomechanics (IACMAG), 2008.
- 12 FIELKE J M, UCGUL M, SAUNDERS C. Discrete element modeling of soil-implement interaction considering soil plasticity, cohesion and adhesion [C] // 2013 ASABE International Meeting, 2013.
- 13 FRIEDMAN S P, ROBINSON D A. Particle shape characterization using angle of repose measurements for predicting the effective permittivity and electrical conductivity of saturated granular media[J]. Water Resources Research, 2002, 38(11): 11-18.
- 14 XIAO X, TAN Y, ZHANG H, et al. Experimental and DEM studies on the particle mixing performance in rotating drums: effect of area ratio[J]. Powder Technology, 2017, 314: 182 194.
- 15 PROBST K, AMBROSE K, ILELEJI K. The effect of moisture content on the grinding performance of corn and corncobs by hammer milling[J]. Transactions of the ASABE, 2013, 56(3):1025-1033.
- 16 UNAL H, ISIK E, IZLI N, et al. Geometric and mechanical properties of mung bean (Vignaradiata L.) grain: effect of moisture [J]. International Journal of Food Properties, 2008, 11(3): 585 - 599.
- 17 ZAALOUK A K, ZABADY F I. Effect of moisture content on angle of repose and friction coefficient of wheat grain [J]. Misr Journal of Agricultural Engineering, 2009, 26(1): 418-427.
- 18 韩燕龙,贾富国,唐玉荣,等.颗粒滚动摩擦系数对堆积特性的影响[J].物理学报,2014,63(17):173-179. HAN Yanlong, JIA Fuguo, TANG Yurong, et al. Influence of granular coefficient of rolling friction on accumulation characteristics[J]. Acta Physica Sinica, 2014, 63(17):173-179. (in Chinese)
- 19 王云霞,梁志杰,张东兴,等. 基于离散元的玉米种子颗粒模型种间接触参数标定[J]. 农业工程学报,2016,32(22):36-42. WANG Yunxia, LIANG Zhijie, ZHANG Dongxing, et al. Calibration method of contact characteristic parameters for corn seeds based on EDEM[J]. Transactions of the CSAE, 2016, 32(22): 36-42. (in Chinese)
- 20 FRACZEK J, ZŁOBECKI A, ZEMANEK J. Assessment of angle of repose of granular plant material using computer image analysis[J]. Journal of Food Engineering, 2007, 83(1): 17-22.
- 21 FADAVI A, MIRZABE A H, MANSOURI A. Moisture-dependent physical properties of Plantain (*Plantago major L.*) seeds by image processing analysis[J]. Agricultural Engineering International: CIGR Journal, 2015, 17(3): 353-363.
- 22 张锐,韩佃雷,吉巧丽,等. 离散元模拟中沙土参数标定方法研究[J/OL]. 农业机械学报, 2017, 48(3):49-56. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? flag = 1&file_no = 20170306&journal_id = jcsam. DOI:10.6041/j.issn. 1000-1298.2017.03.006.

ZHANG Rui, HAN Dianlei, JI Qiaoli, et al. Calibration methods of sandy soil parameters in simulation of discrete element method[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3):49-56. (in Chinese)

23 武涛,黄伟凤,陈学深,等.考虑颗粒间黏结力的黏性土壤离散元模型参数标定[J].华南农业大学学报,2017,38(3):
 93-98.

WU Tao, HUANG Weifeng, CHEN Xueshen, et al. Calibration of discrete element model parameters for cohesive soil considering the cohesion between particles [J]. Journal of South China Agricultural University, 2017, 38(3):93-98. (in Chinese)

24 潘世强.基于离散元法的芯铧式开沟器优化设计与试验研究[D].长春:吉林大学, 2015. PAN Shiqiang. Research on the optimization design and the experiment of the core ploughshare furrow opener based on the discrete element method [D]. Changchun: Jilin University, 2015. (in Chinese)

25 方会敏, 姬长英, AHMED A T, 等. 秸秆-土壤-旋耕刀系统中秸秆位移仿真分析[J/OL]. 农业机械学报, 2016, 47(1): 60-67. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? flag = 1&file_no = 20160109&journal_id = jcsam. DOI: 10.6041/j.issn.1000-1298.2016.01.009.

FANG Huimin, JI Changying, AHMED A T, et al. Simulation analysis of straw movement in straw-soil-rotary blade system [J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1):60-67. (in Chinese)

- 26 UCGUL M, FIELKE J M, SAUNDERS C. 3D DEM tillage simulation: validation of a hysteretic spring (plastic) contact model for a sweep tool operating in a cohesionless soil[J]. Soil and Tillage Research, 2014, 144(4): 220 227.
- 27 UCGUL M, FIELKE J M, SAUNDERS C. Three-dimensional discrete element modelling (DEM) of tillage: accounting for soil cohesion and adhesion[J]. Biosystems Engineering, 2015, 129: 298 306.
- 28 邵明安,王全九,黄明斌. 土壤物理学[M]. 北京:高等教育出版社, 2006.
- 29 依艳丽. 土壤物理研究法[M]. 北京:北京大学出版社, 2009.
- 30 ABDENACER M, KAHINA B I, AÏCHA N, et al. Sequential optimization approach for enhanced production of glutamic acid from Corynebacterium glutamicum 2262 using date juice[J]. Biotechnology and Bioprocess Engineering, 2012, 17(4): 795 - 803.
- 31 JOB J, SUKUMARAN R K, JAYACHANDRAN K. Production of a highly glucose tolerant β-glucosidase by Paecilomycesvariotii MG3: optimization of fermentation conditions using Plackett - Burman and Box - Behnken experimental designs[J]. World Journal of Microbiology and Biotechnology, 2010, 26(8): 1385 - 1391.
- 32 KALKAN F, KARA M. Handling, frictional and technological properties of wheat as affected by moisture content and cultivar [J]. Powder Technology, 2011, 213(1): 116-122.
- 33 UNAL H, ISIK E, IZLI N, et al. Geometric and mechanical properties of mung bean (Vignaradiata L.) grain: effect of moisture [J]. International Journal of Food Properties, 2008, 11(3): 585 - 599.
- 34 SOLOGUBIK C A, CAMPAÑONE L A, PAGANO A M, et al. Effect of moisture content on some physical properties of barley [J]. Industrial Crops and Products, 2013, 43(5): 762 - 767.

(上接第 342 页)

- 11 李丽洁,赵立欣,孟海波,等.生物质热解炭化实验平台设计与实验[J].可再生能源,2016,34(5):305-310. LI Lijie, ZHAO Lixin, MENG Haibo, et al. Design and experiment biomass pyrolysis carbonization experiment setup[J]. Renewable Energy Resources, 2016,34(5):305-310. (in Chinese)
- 12 BURHENNE L, MESSMER J, AICHER T, et al. The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis [J]. Journal of Analytical and Applied Pyrolysis, 2013,101: 177 184.
- 13 PARK D K, KIM S D, LEE S H, et al. Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor [J]. Bioresource Technology, 2010, 101(15): 6151-6156.
- 14 STEFANIDIS S D, KALOGIANNIS K G, ILIOPULOU E F, et al. A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin[J]. Journal of Analytical and Applied Pyrolysis, 2014,105: 143 150.
- 15 WU C, BUDAEIN V L, GRONNOW M J, et al. Conventional and microwave-assisted pyrolysis of biomass under different heating rates [J]. Journal of Analytical and Applied Pyrolysis, 2014,107: 276 - 283.
- 16 CHEN C, WANG J, LIU W, et al. Effect of pyrolysis conditions on the char gasification with mixtures of CO₂ and H₂O[J]. Proceedings of the Combustion Institute, 2013, 34: 2453 - 2460.
- 17 GUIZANI C, SANZ F J E, SALVADOR S. Effects of CO₂ on biomass fast pyrolysis: reaction rate, gas yields and char reactive properties [J]. Fuel, 2014, 116: 310 - 320.
- 18 QUAN C, GAO N B, SONG Q B. Pyrolysis of biomass components in a TGA and a fixed-bed reactor: thermochemical behaviors, kinetics, and product characterization [J]. Journal of Analytical and Applied Pyrolysis, 2016, 121:84 - 92.
- 19 PARK J, LEE Y, RYU C, et al. Slow pyrolysis of rice straw: analysis of products properties, carbon and energy yields [J]. Bioresource Technology, 2014,155:63 - 70.
- 20 WEI L, LIANG S, GUHO N M, et al. Production and characterization of bio-oil and biochar from the pyrolysis of residual bacterial biomass from a polyhydroxyalkanoate production process[J]. Journal of Analytical and Applied Pyrolysis, 2015,115: 268 - 278.