doi:10.6041/j.issn.1000-1298.2017.08.038

低酰基结冷胶/酪蛋白酸钠复合体系液-固转变流变学表征

陈 青 马慧婷 陆海霞 姚兰英 (浙江工商大学食品与生物工程学院,杭州 310018)

摘要:采用流变学方法研究了低酰基结冷胶(LA)和酪蛋白酸钠(SC)复合体系的液-固转变,对比了储能模量、损 耗模量交点法和 Winter 准则,并利用非等温动力学模型研究了 LA/SC 复合体系的结构变化。结果表明,Winter 准 则更适用于表征 LA/SC 复合体系的液-固转变。对于 LA/SC 复合体系而言,酪蛋白酸钠存在一个临界质量浓度 0.005 g/mL,当体系内酪蛋白酸钠质量浓度低于该临界值时,酪蛋白的添加对凝胶温度影响不大,但当酪蛋白酸钠 质量浓度超过该临界值时,酪蛋白酸钠的添加会显著地降低复合体系的凝胶温度。复合体系的松弛指数随着酪蛋 白浓度的升高呈先增大后降低的变化趋势,而分形维数则随着酪蛋白浓度的升高呈先减小后增大的变化趋势。非 等温动力学研究结果表明,复合体系的凝胶可以分为2个阶段。

关键词:结冷胶:酪蛋白酸钠:液-固转变:流变学

中图分类号: TS201.7 文献标识码: A 文章编号: 1000-1298(2017)08-0322-06

Rheological Characterization on Liquid – Solid Transition of Low Acyl Gellan/Sodium Caseinate Mixtures

CHEN Qing MA Huiting LU Haixia YAO Lanying

(School of Food Science and Biotehnology, Zhejiang Gongshang University, Hangzhou 310018, China)

Abstract: The liquid - solid transition of low acyl gellan (LA) and sodium caseinate (SC) mixtures were investigated by using rheological measurements. The liquid - solid transition temperatures were determined from two criteria: the crossover of storage modulus G' and loss modulus G'', and the Winter's criterion. The results showed that the Winter's criterion was more suitable to determine the sol-gel transition temperature. For LA/SC mixtures, there was a critical SC concentration (0.005 g/mL ratio of mass to volume). The concentration of sodium caseinate almost had no influence on the gelation temperature of LA/SC mixtures at or below concentration of 0.005 g/mL. While above 0.005 g/mL, the gelation temperatures of LA/SC mixtures were decreased linearly with the increase of SC concentration. The relaxation critical exponent n can be determined by the Winter's criterion. There was no universal nfor the gelation in LA/SC mixed solutions, indicating that this gelation belonged to the cross-linking of existing macromolecules. And n increased with the increase of SC concentration until SC concentration reached a critical level, after which further increase in SC concentration resulted in a reduction of n. The fractal dimension d_{f} was calculated from n without the screened hydrodynamic interaction or the excluded volume effect and the trend of the change of the d_i was opposite to that of n. Using a non-isothermal kinetics model, active energy (E_a) during gelation was calculated. However, a discontinuity was observed in the activation energy plots. Based on this, two gelation mechanisms were presumedassociation of low acyl gellan gum and sodium caseinate molecules and aggregation of polymer strands. **Key words**: gellan gum; sodium caseinate; liquid – solid transition; rheology

引言

在食品工业中,为了获得较好的口感和储藏稳

定性,通常会将蛋白质和多糖复配使用,蛋白质和多 糖相互作用机理的研究,有助于食品加工生产中开 发和设计新产品^[1-4]。蛋白质和多糖都可以形成凝

收稿日期: 2016-12-16 修回日期: 2017-02-21

基金项目: 国家自然科学基金项目(51103131)、食品科学与工程浙江省重中之重一级学科开放基金项目(JYTSP20142091)和浙江大学高 分子合成与功能构造教育部重点实验室项目(2015MSF002)

作者简介:陈青(1976—),女,副教授,博士,主要从事食品物性学研究,E-mail:qingchen@mail.zjgsu.edu.cn

胶,凝胶在形成过程中,体系会经历从液态到固态的 相转变,掌握凝胶的液-固转变对于指导食品加工具 有重要的意义^[5-6]。

酪蛋白是牛奶中最重要的蛋白质,决定了牛奶的加工性质。结冷胶是由少动鞘脂单胞菌产生的一种新型微生物多糖,具有用量少、耐酸耐热、良好的香味释放性和复配性等特点,日益受到食品业界的青睐^[7]。国内外研究者对于酪蛋白和多糖相互作用研究主要集中在卡拉胶、果胶等胶体上。 EGHBAL等^[8]研究发现,酪蛋白酸钠和低甲氧基果胶可以在pH值为3的条件下凝聚,该凝聚物可用来制备可食用膜,当酪蛋白酸钠/低甲氧基果胶复配比为0.05时,可食用膜的力学性能最优。KOBORI等^[9]发现在中性条件下,酪蛋白酸钠和黄原胶分子结合不会引起体系明显相分离,而在酪蛋白等电点处会促进黄原胶分子链的聚集。关于酪蛋白和结冷胶相互作用机理的研究还鲜有报道。

目前,用于表征食品体系液-固转变的方法很 多^[10-13],如顺磁共振、核磁共振、差示扫描量热法和 流变学方法等。其中动态流变学测试在小应变条件 下进行,其过程不会对试样本身结构造成影响或破 坏,且在小应变条件下呈现的线性粘弹响应对材料 形态结构的变化十分敏感,可以获得有关体系分散 状态、结构变化方面重要的信息^[14-16]。因此,利用 流变学方法研究体系的液-固转变行为在国内外引 起了广泛关注。鉴于此,本文以酪蛋白酸钠和低酰 基结冷胶为研究对象,利用流变学方法考察酪蛋白 酸钠/低酰基结冷胶复合体系的液-固转变,探究浓 度对复合体系凝胶温度的影响,并对复合体系凝胶 动力学进行考察,以期为我国乳品工业的加工与质 量调控提供理论依据。

1 材料与方法

1.1 材料与试剂

低酰基结冷胶(LA),食品级,美国 CP Kelco 公司;酪蛋白酸钠(SC),食品级,Sigma 公司;叠氮化钠,分析纯,东阳市天宇化工有限公司。

1.2 仪器与设备

JZ78-1型磁力搅拌器,杭州通用电子仪表厂; 电子天平,北京赛多利斯仪器系统有限公司;AR-G2型流变仪,美国 TA 公司。

1.3 试验方法

1.3.1 复合溶液的制备

在室温(20℃)下将适量的结冷胶粉末加入到 去离子水中,充分溶胀 24 h,于 90℃下进行磁力搅 拌,直至结冷胶粉末完全溶解形成澄清透明的溶液, 即可制得结冷胶水溶液。酪蛋白酸钠溶液的配制则 是在室温下将适量酪蛋白酸钠粉末加入到去离子水 中,磁力搅拌5h直至酪蛋白酸钠全部溶解,添加 3 mmol/L的叠氮化钠作为抑菌剂。之后将酪蛋白 酸钠溶液和结冷胶溶液在70℃下混合,即得LA/SC 复合溶液。

复合溶液中低酰基结冷胶的质量浓度为 0.01 g/mL,酪蛋白酸钠溶液的质量浓度为 0.003、 0.005、0.008、0.010、0.015、0.020 g/mL。

1.3.2 流变特性测定

采用 AR - G2 型旋转流变仪进行流变测试, 平行板模式,平行板直径为 60 mm。动态温度扫 描频率 0.5~10 rad/s,温度 10~45℃,降温速度 1℃/min。动态频率扫描的频率范围 0.1~20 rad/s, 应变 5%(以确保测试在线性粘弹范围内进行),温 度 15~35℃。测试前将暴露在空气中的试样表面 涂一层甲基硅油,以防止测试过程中水分挥发。

每组测试均做 3 次平行测定,试验结果为平均值。

2 结果与分析

2.1 LA/SC 复合体系液-固转变的流变特性

图1给出了在降温过程中LA/SC复合体系的 动态温度扫描曲线(为了更好地区分曲线,不同浓 度下的动态温度扫描曲线进行了平移),可知,在高 温区域,复合体系的损耗模量 G"大于储能模量 G', 且值很小,表现为典型的粘性流体流动特性,随着温 度的降低,复合体系的 G"和 G'均开始缓慢增大,开 始时,G'和 G"增加速率较慢,随着温度的降低,二者 逐渐接近并交于一点。之后 G'和 G"迅速增大,G'增 大速率大于 G"增大速率。当温度较低时,G'>G", 且基本保持定值,反映出此时复合体系为类固体。 对于 LA/SC 复合体系而言,在降温过程中,复合体 系内部由于大分子链的聚集形成了网络结构而使其 表现出类固体的特性,说明其在降温过程中经历了 液-固体转变,形成了凝胶。

关于高分子体系液-固转变的研究较多,TUNG 等^[17]认为发生液-固转变时体系的 G' = G",这种凝 胶点的判定方法非常简单,已经在很多生物大分子 凝胶研究中被广泛使用。由图 1 可知,在每一个浓 度下,G'和 G"的曲线均相交于一点,该点的温度可 以认为是体系的液-固转变温度 T_{g,e}。由 G'和 G"交 点法确定出的凝胶温度 T_{g,e}如表 1 所示。显然,当 酪蛋白酸钠质量浓度低于 0.005 g/mL 时,酪蛋白酸钠 浓度高于 0.005 g/mL 时,随着体系内酪蛋白酸钠含

Fig. 1 Dynamic temperature sweep curves of LA/SC mixture at different concentrations

表1 LA/SC 复合体系凝胶温度、松弛指数和分形维数

Tab. 1Gelation temperature, critical exponent and
fractal dimension of LA/SC mixtures

SC 质量浓度/	T /%	T / \mathcal{C}	松弛指数	分形维数
$(g \cdot mL^{-1})$	I _{g,c} / C	1 _{g,ω} / C	n	d_{f}
0	32.0	32.3	0.56	1.73
0.003	31.6	32.4	0.54	1.76
0.005	32.2	32.4	0.64	1.60
0.008	28.4	30.2	0.70	1.51
0.010	22.7	27.4	0.50	1.82
0.015	19.8	22.4	0.40	1.96
0.020	18.2	20.6	0.31	2.09

量的升高,复合体系的液-固转变温度会显著地移向 低温方向。

CHAMBON 等^[18]发现 G'和 G"交点法对于一些 大分子体系并不适用,因为其具有频率依赖性。在 LA/SC 复合体系的研究中也观察到了类似现象, 图 2 给出了 G'和 G"交点与频率的依赖性(为了更好 地区分曲线,不同扫描频率下的曲线进行了平移)。 由图 2 可见,对于 LA/SC 复合体系而言,测试频率 会显著影响体系的液-固转变温度,测试频率越大, 液-固转变温度越高,当测试频率为0.5 rad/s 时,G' 和 G"交点法确定出的凝胶温度为18.2℃,而当测试 频率增大到 10 rad/s 时,G'和 G"交点法确定出的凝 胶温度增加至 23.5℃。从理论上讲,液-固转变对 应着体系内部某种有序结构的形成,是不会随着动

态测试频率改变而改变的。因此,根据上述结果认为 G'和 G"交点法不适用于 LA/SC 复合体系液-固转变温度的确定。

图 2 测试频率对 LA/SC 体系动态储能模量和损耗 模量的影响

Fig. 2 Effects of oscillatory frequency on dynamic storage and loss moduli of LA/SC mixture

图 3 给出了 LA/SC 复合体系的频率扫描曲线 (图中 ω 表示扫描频率,为了更好地区分曲线,不同 温度下的频率扫描曲线进行了平移)。由图 3 可 知,当温度较高时,体系的 G' < G",表现出类液体的 流动特性,当温度较低时,体系的 G' > G",表现出类 固体的流动特点,对于酪蛋白酸钠质量浓度为 0.005 g/mL 的体系而言,其液-固转变温度在 32 ~ 33℃区间内,而对于酪蛋白酸钠质量浓度为0.01 g/mL 体系而言,其液-固转变温度区间为 27 ~ 29℃。由 此也可看出,酪蛋白酸钠浓度越高,凝胶温度越低, 说明复合体系在室温下越不容易形成凝胶。

WINTER^[19]研究发现,在物理凝胶点处,动态储 能模量 G'_e和损耗模量 G''_e依赖于频率的同一因子变 化,公式为

$$G'_{\rm c}(\omega) \propto G''_{\rm c}(\omega) \propto \omega^n$$
 (1)

在物理凝胶点处动态储能模量和损耗模量与频 率无关,公式为

$$\frac{G_{\rm c}''}{G_{\rm c}'} = \tan \frac{n\pi}{2} = {\rm const}$$
(2)

图 4 给出了酪蛋白酸钠质量浓度为 0.01 g/mL 的复合体系损耗因子 tanδ 随温度的变化关系曲线。

Fig. 3 Frequency sweep curves of LA/SC mixture

可见,不同温度下的 $tan\delta$ 曲线相交于一点,交点对 应的温度就是凝胶温度 $T_{g,\omega}$ 。其他浓度的样品也得 到了类似的结果,利用 Winter 准则确定的凝胶温度 $T_{g,\omega}$ 如表 1 所示。可见,LA/SC 复合体系的 n 不是 一个定值,其值在 0.31 ~ 0.70 之间变化,研究者发 现,不同种类凝胶的 n 在 0~1 之间变化。当卡拉胶 不加钾离子时,n 在 0.18 ~ 0.21 间变化,添加钾离 子后 n 则在 0.17 ~ 0.24 范围内^[20]。

对比 2 种方法, Winter 准则确定出的凝胶温度 $T_{g,\omega}$ 均高于 G'和 $G''交点法确定出的凝胶温度 <math>T_{g,e}$, 这是因为 G'和 G''交点法与测试频率相关, 因此认为Winter 准则更适用于 LA/SC 复合体系凝胶温度的确定。

很多研究表明,随着体系内多糖含量的增加,体 系的凝胶温度会升高^[21]。由表1可见,酪蛋白酸钠 浓度对复合体系凝胶温度影响显著,对于LA/SC复 合体系而言,酪蛋白酸钠质量浓度存在一个临界值 0.005 g/mL,当体系内酪蛋白酸钠浓度低于该临界 值时,酪蛋白的添加对凝胶温度影响不大,但当酪蛋 白酸钠浓度超过该临界值时,体系的凝胶温度则随 着酪蛋白含量的升高而呈线性关系降低,此时凝胶 温度 $T_{g,\omega}$ 和酪蛋白酸钠质量浓度 C_{sc} 之间的关系符 合: $T_{g,\omega}$ = 36.23 - 8.3 C_{sc} 。THOMAR 等^[22]对不同 pH 值环境中酪蛋白酸钠热凝胶行为进行研究时发 现,随着体系内酪蛋白酸钠浓度的降低,体系的凝胶 温度逐渐升高。

2.2 松弛指数、分形维数与浓度的关系

分形维数可以反映大分子聚集体的内在结构以及相互作用,MUTHUKUMAR^[23]发现,松弛指数与分形维数符合

$$n = \frac{d(d+2-2d_f)}{2(d+2-d_f)}$$
(3)

式中 d——空间维数

通常,d取值为3,根据式(3),可以计算出LA/SC复合体系的分形维数,结果列于表1中。对于所

研究的体系而言,d_f的值在 1.51~2.09 之间,n 越 小,d_f越大,说明体系结构越致密。由表 1 可知,LA/ SC 复合体系的 n 随着酪蛋白酸钠浓度的增大出现 了先增大后降低的变化趋势,而 d_f则出现了先减小 后增大的变化趋势,这说明,LA/SC 复合凝胶的网 络结构随着酪蛋白酸钠浓度的升高先疏松后致密。

PACEK 等^[24]在研究酪蛋白酸钠/海藻酸复合 体系时发现,相分离使得海藻酸钠形成球状颗粒。 REDIGUIERI 等^[25]发现, 酪蛋白酸钠/果胶复合体 系中存在富含果胶的连续相和富含酪蛋白酸钠的球 形分散相,果胶会吸附到酪蛋白胶束的表面并起到 稳定作用。课题组在进行 LA/SC 复合凝胶的凝胶 特性研究时发现,LA 会聚集形成纤维,纤维再聚集 形成海绵状的三维网络结构,而酪蛋白酸钠则呈球 状聚集体填充或吸附在低酰基结冷胶形成的网络结 构中。当 SC 和 LA 混合后, LA 会吸附在 SC 表面。 温度降低时,LA 分子会从无规卷曲状态转变为双螺 旋构象,双螺旋构象会聚集形成联接区,并最终与 SC 一起形成网络结构。当体系内结冷胶浓度较高 时,LA分子链聚集形成网络结构,而SC以颗粒状 镶嵌或填充在 LA 形成的网络结构中,多糖含量较 高,多糖分子之间发生碰撞的几率增大,形成的网络 结构更为致密。当酪蛋白酸钠浓度较高时,因为相 分离,酪蛋白酸钠形成连续相,低酰基结冷胶则变为 分散相,故而此时体系的致密程度主要与酪蛋白酸 钠的浓度相关,酪蛋白酸钠浓度越高,体系越致密。

2.3 LA/SC 复合体系凝胶非等温动力学研究

凝胶动力学研究通常采用的方法是在固定的温度下进行时间扫描,即利用等温动力学方法进行考察。凝胶的形成是与时间和温度紧密相关的过程,相比于等温动力学模型,非等温动力学模型将温度和时间的影响有机结合,可以用来表征很多生物大分子的凝胶动力学过程。YOON等^[26]认为如果降温/升温是等速过程,在降温/升温过程中非等温动力学模型可表示为

$$\ln\left(\frac{1}{G'^{m}}\frac{\mathrm{d}G'}{\mathrm{d}t}\right) = \ln k_{0} - \frac{E_{a}}{RT}$$
(4)

很多研究表明,生物大分子在水溶液中的聚集 过程是二级反应,因此选取反应级数 m = 2。图 5 给 出了 SC 质量浓度为 0.003 g/mL 的 LA/SC 复合体 系的非等温动力学拟合结果。可见,LA/SC 复合体 系的凝胶可分为 2 个阶段,第 1 个阶段(高温区域: $T_1 \sim 33.0^{\circ}$)的凝胶形成主要是由于氢键的形成

以及结冷胶构象变化引起的双螺旋链的形成。第 2 阶段(低温:15.0℃~ T_2)凝胶形成的主要作用机 理是双螺旋链的聚集和联接区的发展。22.0~ 25.0℃之间为活化能不连续区。研究结果表明, 复合体系凝胶动力学受试样的热历史影响显著, 温度较高时,活化能较大,反映出缠结高分子与未 缠结高分子之间存在较高的能量位垒,很难形成 连续的网络结构,而温度较低区间的活化能较小, 说明此时分子链之间较易发生聚集,并最终形成 网络结构,这与 YOON 等^[26]对角叉胶/黄原胶复合 体系的研究结果类似。

在其它酪蛋白酸钠浓度下也得到了类似的结果,对于所研究的样品而言,*T*₁在 24.5~27.5℃区

间内, T_2 在 22.5 ~ 25.0℃区间内, 不连续区的范围 与酪蛋白钠含量基本无关。LA/SC 复合体系在高 温区域(T_1 ~ 33.0℃)的活化能为 277.35 ~ 478.46 kJ/mol, 在低温区域(15.0℃ ~ T_2)的活化能 为112.16 ~ 190.53 kJ/mol。酪蛋白酸钠浓度对复 合体系活化能的影响不明显。YOON 等^[26]发现角 叉胶/黄原胶复合体系的活化能在 T_1 ~ 55℃时为 118.21 ~ 178.81 kJ/mol, 25℃ ~ T_2 时为 83.55 ~ 93.43 kJ/mol。显然, LA/SC 复合体系的活化能明 显高于角叉胶/黄原胶复合体系的活化能。

3 结束语

采用流变学方法研究了低酰基结冷胶(LA)和 酪蛋白酸钠(SC)复合体系的液-固转变,研究结果 表明,Winter 准则更适用于表征 LA/SC 复合体系的 液-固转变,SC 浓度对复合体系凝胶温度影响显著, 当 SC 质量浓度低于 0.005 g/mL 时,凝胶温度变化 不大,当 SC 质量浓度高于 0.005 g/mL 时,复合体系 的凝胶温度会随着 SC 浓度的升高呈直线关系降 低。非等温动力学研究发现,LA/SC 复合体系的凝 胶过程可以分为 2 个阶段,第 1 个阶段是体系内氢 键的形成和结冷胶构象转变引起的双螺旋链的形 成,第 2 个阶段则是双螺旋链的聚集和联结区的进 一步发展。

参考文献

- 1 BURESOVA I, MASARIKOVA L, HRIVNA L, et al. The comparison of the effect of sodium caseinate, calcium caseinate, carboxymethyl cellulose and xanthan gum on rice-buckwheat dough rheological characteristics and textural and sensory quality of bread[J]. LWT—Food Science and Technology, 2016, 68: 659 666.
- 2 BOURBON A I, PINHEIRO A C, CERQUEIRA M A, et al. Influence of chitosan coating on protein-based nanohydrogels properties and in vitro gastric digestibility [J]. Food Hydrocolloids, 2016, 60: 109 118.
- 3 CHEN C C, CHEN S T, HSIEH J F. Proteomic analysis of polysaccharide-milk protein interactions induced by chitosan [J]. Molecules, 2015, 20(5): 7737 - 7749.
- 4 VAN DE VELDE F, DE HOOG E H A, OOSTERVELD A, et al. Protein-polysaccharide interactions to alter texture [J]. Annual Review of Food Science and Technology, 2015, 6: 371 388.
- 5 ERSCH C, VAN DER LINDEN E, VENEMA P, et al. The microstructure and rheology of homogeneous and phase separated gelatine gels[J]. Food Hydrocolloids, 2016, 61: 311-317.
- 6 ZHANG Z Y, YANG Y L, ZHOU P, et al. Effects of high pressure modification on conformation and gelation properties of myofibrillar protein[J]. Food Chemistry, 2017, 217: 678-686.
- 7 MORRIS E R, NISHINARI K, RINAUDO M. Gelation of gellan-a review[J]. Food Hydrocolloids, 2012, 28: 373-411.
- 8 EGHBAL N, YARMANDA M S, MOUSAVIA M, et al. Complex coacervation for the development of composite edible films based on LM pectin and sodium caseinate[J]. Carbohydrate Polymers, 2016, 151: 947 - 956.
- 9 KOBORI T, MATSUMOTO A, SUGIYAMA S. pH-dependent interaction between sodium caseinate and xanthan gum [J]. Carbohydrate Polymers, 2009, 75(4): 719-723.
- 10 TSUTSUMI A, OZAWA T, OKADA M, et al. Electron spin resonance study on the sol-gel transition of gellan gum aqueous solution by the addition of paramagnetic metal-ions[J]. Progress in Colloid and Polymers Science, 1999, 114: 31 35.
- 11 HIKICHI K. Sol-gel transition of κ -carrageenan as viewed through NMR[J]. Polymer Gels and Networks, 1993, 1(1): 19-31.
- 12 NUNEZ-SANTIAGO M D C, TECANT A. Rheological and calorimetric study of the sol-gel transition of κ -carrageenan [J]. Carbohydrate Polymers, 2007, 69(4): 763 773.
- 13 ANVARI M, CHUNG D. Effect of cooling heating rate on sol-gel transformation of fishgelatin gum arabic complex coacervate

phase[J]. International Journal of Biological Macromolecules, 2016, 91: 450-456.

- 14 SONG Y, ZHENG Q. Concepts and conflicts in nanoparticles reinforcement to polymers beyond hydrodynamics [J]. Progress in Material Science, 2016, 84: 1-58.
- 15 叶涛,杜淼,宋义虎,等. 烷基三甲基溴化铵对羧甲基纤维素钠亚浓缠结溶液流变行为的影响[J]. 高分子学报,2015, 24(7):827-834.

YE Tao, DU Miao, SONG Yihu, et al. Effect of alkyl trimethylammonium bromide on rheology of entangled semi-dilute solution of sodium carboxymethylcellulose[J]. Acta Polymerica Sinica, 2015,24(7): 827-834. (in Chinese)

- 16 熊秀芳, 靳莉珍, 李星恕, 等. 基于流变和电特性的豆浆凝固过程动力学解析[J/OL]. 农业机械学报, 2015, 46(4): 211-218. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? flag = 1&file_no = 20150431&journal_id = jcsam. DOI:10.6041/j.issn.1000-1298.2015.04.031. XIONG Xiufang, JIN Lizhen, LI Xingshu, et al. Kinetic model of coagulation process of soymilk gel based on electrical and rheological properties[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(4): 211 - 218. (in Chinese)
- 17 TUNG C Y M, DYNES P J. Relationship between viscoelastic properties and gelation in thermosetting systems [J]. Journal of Applied Polymer Science, 1982, 27(2): 569 - 574.
- 18 CHAMBON F, PETROVIC Z S, MAC KNIGHT W J, et al. Rheology of model polyurethanes at the gel point [J]. Macromolecules, 1986, 19(8): 2146-2149.
- 19 WINTER H H. Transient networks: evaluation of rheology during chemical gelation [J]. Progress in Colloid Polymer Science, 1987, 75: 104 - 110.
- 20 LIU S J, BAO H Q, LI L. Thermoreversible gelation and scaling laws for grapheneoxide-filled kappa-carrageenan hydrogels[J]. European Polymer Journal, 2016, 79: 150 - 162.
- 21 FLORES-HUICOCHEA E, RODRÍGUEZ-HERNÁNDEZ A I, ESPINOSA-SOLARES T, et al. Sol-gel transition temperatures of high acyl gellan with monovalent and divalent cations from rheological measurements[J]. Food Hydrocolloids, 2013, 31: 299 – 305.
- 22 THOMAR P, NICOLAI T. Heat-induced gelation of casein micelles in aqueous suspensions at different pH[J]. Colloids and Surfaces B: Biointerfaces, 2016, 146:801-807.
- 23 MUTHUKUMAR M. Screening effect on viscoelasticity near the gel point[J]. Macromolecules, 1989, 22(12): 4658-4660.
- 24 PACEK A W, DING P, NIENOW A W, et al. Phase separation and drop size distributions in homogeneous Na-alginate/Na caseinate mixture[J]. Carbohydrate Polymers, 2000, 42(4): 401-409.
- 25 REDIGUIERI C F, DE FREITAS O, LETTINGA M P, et al. Thermodynamic incompatibility and complex formation in pectin/ caseinate mixtures [J]. Biomacromolecules, 2007, 8(11): 3345 - 3354.
- 26 YOON W B, GUNASEKARAN S. Evaluation of structure development of xanthan and carob bean gum mixture using nonisothermal kinetic model[J]. LWT—Food Science and Biotechnology, 2007, 16: 954-957.