doi:10.6041/j.issn.1000-1298.2017.01.046

并联机构正运动学 AWPSO - SM 求解算法

杨 辉 郝丽娜 项超群

(东北大学机械工程与自动化学院,沈阳 110819)

摘要:通过将数值迭代算法与智能优化算法相结合,提出并联机构正运动学问题的通用求解算法——自适应权重 粒子群-弦截法(AWPSO-SM)算法,并针对3-UCU(U为万向副,C为圆柱副)并联机构给出AWPSO-SM的详细 求解过程。为了验证所提算法的有效性,在Matlab环境下,分别给出3-UCU、3-PPR(P为移动副,R为转动副)以 及4-SPS(S为球副)3种典型并联机构正运动学问题的求解算例,并分别与AWPSO和弦截法的求解结果进行对 比。由仿真结果可知,AWPSO-SM克服了单一方法在局部收敛性和初值选取方面对计算结果的影响,可有效地对 并联机构的正运动学问题进行求解。

AWPSO – SM Algorithm for Parallel Mechanism Forward Kinematics

YANG Hui HAO Li'na XIANG Chaoqun

(School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China)

Abstract: By a combination of the numerical iteration method and the intelligent optimization algorithm, the adaptive weight particle swam optimization with secant method (AWPSO – SM) was presented which was applied for solving the parallel mechanism forward kinematics problems. Then, the 3 – UCU (U is universal pair, C is cylindrical pair) parallel mechanism was treated as the research object, and then the detailed solving process of AWPSO – SM was given, namely, the inverse kinematics model of 3 – UCU parallel mechanism was established firstly; based on the model, the iterated function and fitness function was designed, and then the forward kinematics of the 3 – UCU parallel mechanism was solved by AWPSO – SM. Finally, the effectiveness and accuracy of AWPSO – SM was verified via several numerical examples of 3 – UCU parallel mechanism, 3 – PPR (P is prismatic pair, R is revolute joint) parallel mechanisms in Matlab environment. From simulation results, AWPSO – SM avoids the effects of the local convergence and the initial value on the calculation results, and could solve the forward kinematics of the 3 – UCU parallel mechanism effectively. Moreover, AWPSO – SM avoids the complicated derivation process and has simple calculating process. AWPSO – SM has better accuracy with little iteration times and universality than AWPSO and secant method.

Key words: parallel mechanism; forward kinematics; AWPSO - SM

引言

并联机构具有结构简单、累计误差小、承载能力 大等特点,被广泛应用于工业制造、航空航天等领域 中^[1-3]。然而,并联机构普遍存在逆运动学问题简 单、正运动学问题复杂的现象,且由于机构运动学分 析是机构其他性能研究及运动控制的基础,故并联 机构正运动学问题的求解方法仍是当前国内外的研 究热点。

目前并联机构正运动学问题的求解方法主要分为2种,即解析法和数值法。利用解析法虽可以求 得机构全部运动学正解,能完整地描述机构的运动

收稿日期: 2016-05-23 修回日期: 2016-06-20

基金项目:国家自然科学基金面上项目(61573093)和国家高技术研究发展计划(863计划)项目(2015AA042302)

作者简介:杨辉(1987—),男,博士生,主要从事机器人柔顺性控制研究,E-mail: 405377205@qq.com

通信作者:郝丽娜(1968—),女,教授,博士生导师,主要从事机器人建模与智能控制研究, E-mail: haolina@ me. neu. edu. cn

特性,但其计算过程极为复杂,目针对不同的机构其 消元方法也不尽相同,缺乏通用性,故仅能作为理论 分析的手段而无法实际应用[4-7]。相比之下,数值 法计算过程较为简洁,能够快速地对正运动学问题 进行求解,但是数值法往往需要约束条件,故无法求 得正运动学问题的全部解^[8]。常用数值求解方法 有两种,即数值迭代法和智能优化算法^[9-10]。文 献[11]基于运动学逆解方程,得到并联机构杆长微 变量与运动平台微变量之间的线性关系,通过不断 叠加连杆的微小变量,从而得到 6-3 型 Steward 平 台的运动学正解。文献[12]则针对 3-PPR 型并联 机构,应用改进的蚁群算法对其正运动学问题进行 求解,并通过数值算例验证了算法的有效性。文 献[13]则针对 6-SPS 平台利用带有竞争机制的共 享适应度粒子群(CSFPSO)算法实现了对其全部运 动学正解的求解。然而,数值迭代法的求解精度受 初值选取的影响较大,而智能优化算法则存在易陷 入局部收敛的问题。针对上述问题,本文提出将数 值迭代与智能优化算法相结合的思路,首先利用智 能优化算法求得较为理想的迭代初值,然后利用数 值迭代方法对并联机构的正运动学问题进行求解。

1 AWPSO - SM 算法描述

粒子群(PSO)算法与蚁群算法、人群搜索算法 以及果蝇算法等相似,是一种基于群体的随机优化 算法,其初值是随机的,且具有迭代格式简单、收敛 快、效率高等特点,但 PSO 算法与大多数优化算法 一样存在容易陷入局部最优的缺点。本文采用自适 应权重粒子群(AWPSO)算法^[14],该方法比传统 PSO 方法收敛速度快,在较少的迭代次数下便可获 得较好计算结果。

数值迭代算法采用弦截法,该方法是在牛顿法的基础上得出的一种插值方法,相比牛顿法,它避免 了对非线性方程的复杂求导过程,具有较好的收敛 精度,但与大多数数值迭代方法一样,其对初值的选 取具有严格的要求。

上述 2 种方法分别在智能优化算法及数值迭代 算法中具有一定的代表性,本文提出将上述 2 种方 法配合使用,并基于此提出 AWPSO - SM 算法,即利 用 AWPSO 算法求取弦截法所需的初值,然后利用 弦截法进一步求解并联机构的正运动学问题。 AWPSO - SM 算法流程图如图 1 所示。

利用 AWPSO - SM 算法求解并联机构正运动学问题的步骤如下:

(1)建立并联机构运动学逆解方程。

(2)根据所建逆解方程,设计 AWPSO - SM 算

Fig. 1 Flow chart of AWPSO - SM algorithm

法所需的迭代函数及适应度函数,并根据图1所示 的算法流程对并联机构的正运动学问题进行求解。

本文以3-UCU并联机构为例,对基于AWPSO-SM 算法的并联机构正运动学问题的详细求解过程 进行阐述。

2 3-UCU 并联机构正运动学求解

2.1 逆运动学方程的建立

建立如图 2 所示的空间坐标系。首先,在固定 平台中心点处建立固定坐标系 $O_B X_B Y_B Z_B$,其中 X_B 轴过固定平台铰链点 B_3 , Y_B 轴与边 $B_1 B_3$ 相交且与边 $B_1 B_2$ 平行, Z_B 轴垂直于固定平台向上;然后,在运动 平台中心点处建立运动坐标系 $O_P X_P Y_P Z_P$,与固定

图 2 3-UCU 并联机构模型 Fig. 2 Model of 3-UCU parallel mechanism

c s

坐标系相同,其 X_p 轴过运动平台铰链点 A_3, Y_p 轴与 边 A_1A_3 相交且与边 A_1A_2 平行, Z_p 轴垂直于运动平台 向上。 l_1, l_2, l_3 分别为连杆 B_3A_3, B_2A_2, B_1A_1 的长度。

$$\boldsymbol{R} = \boldsymbol{R}_{Z_p}(\varphi) \boldsymbol{R}_{Y_p}(\theta) \boldsymbol{R}_{X_p}(\psi) = \begin{bmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \\ 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} \cos\varphi \cos\varphi & \cos\varphi \sin\theta \sin\psi - \sin\varphi \cos\psi \\ \sin\varphi \cos\theta & \sin\varphi \sin\theta \sin\psi + \cos\varphi \cos\psi \end{bmatrix}$$

 $-\sin\theta$ $\cos\theta\sin\psi$

式中, ψ 、 θ 、 φ 分别为运动平台相对固定坐标系 X_B 、 Y_B 、 Z_B 轴的转角。由于运动平台与固定平台半径相 等,即 $r_P = r_B = r$,则铰链点 A_i 、 B_i (i = 1, 2, 3)在其各 自坐标系中的位置坐标为

$$\begin{cases} \boldsymbol{A}_{1} = \begin{bmatrix} -\frac{r}{2} & \frac{\sqrt{3}}{2}r & 0 \end{bmatrix}^{\mathrm{T}} \\ \boldsymbol{A}_{2} = \begin{bmatrix} -\frac{r}{2} & -\frac{\sqrt{3}}{2}r & 0 \end{bmatrix}^{\mathrm{T}} \\ \boldsymbol{A}_{3} = \begin{bmatrix} r & 0 & 0 \end{bmatrix}^{\mathrm{T}} \\ \boldsymbol{B}_{1} = \begin{bmatrix} -\frac{r}{2} & \frac{\sqrt{3}}{2}r & 0 \end{bmatrix}^{\mathrm{T}} \\ \boldsymbol{B}_{2} = \begin{bmatrix} -\frac{r}{2} & \frac{\sqrt{3}}{2}r & 0 \end{bmatrix}^{\mathrm{T}} \\ \boldsymbol{B}_{2} = \begin{bmatrix} r & 0 & 0 \end{bmatrix}^{\mathrm{T}} \end{cases}$$
(3)

运动坐标系 $O_p X_p Y_p Z_p$ 原点相对于固定坐标系 $O_B X_B Y_B Z_B$ 的位置坐标可表示为 **P** = $(0,0,h)^{\mathrm{T}}$,

将固定坐标系 $O_B X_B Y_B Z_B$ 作为参考坐标系,设机构 转动顺序为 $Z_{p} - Y_{p} - X_{p}$,则运动坐标系 $O_p X_p Y_p Z_p$ 相 对其的旋转矩阵 **R** 为

$$\begin{bmatrix} 0\\0\\1\\\end{bmatrix} \begin{bmatrix} \cos\theta & 0 & \sin\theta\\0 & 1 & 0\\-\sin\theta & 0 & \cos\theta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\0 & \cos\psi & -\sin\psi\\0 & \sin\psi & \cos\psi \end{bmatrix} =$$

$$\begin{bmatrix} s_{l} & s_{m} & s_{n}\\y_{l} & y_{m} & y_{n}\\z_{l} & z_{m} & z_{n} \end{bmatrix}$$

$$(1)$$

h 为机构高度。则两平台相应铰链点之间的连杆 矢量为

$$l_i \boldsymbol{e}_i = \boldsymbol{P} + \boldsymbol{R} \boldsymbol{A}_i - \boldsymbol{B}_i \quad (i = 1, 2, 3) \tag{4}$$

将铰链点 A_i、B_i的坐标代入式(4),则可得到 3 根连杆的长度变化方程为

$$\begin{cases} l_{1} = \sqrt{2r^{2}(1 - x_{l}) + h(h + 2rz_{l})} \\ l_{2} = \sqrt{2r^{2} + h^{2} - \frac{r^{2}}{2} \left(x_{l} + \sqrt{3}x_{m} + \sqrt{3}y_{l} + 3y_{m} + \frac{2\sqrt{3}}{r}hz_{m} + \frac{2}{r}hz_{l} \right)} \\ l_{3} = \sqrt{2r^{2} + h^{2} - \frac{r^{2}}{2} \left(x_{l} - \sqrt{3}x_{m} - \sqrt{3}y_{l} + 3y_{m} - \frac{2\sqrt{3}}{r}hz_{m} + \frac{2}{r}hz_{l} \right)} \end{cases}$$
(5)

式(5)即为3-UCU并联机构的逆运动学方程。

2.2 AWPSO - SM 数值求解

算法的具体运算过程如下:

$$\begin{cases} f_{1}(\psi,\theta,\varphi) = \left[\sqrt{2r^{2}(1-x_{l}) + h(h+2rz_{l})}\right]^{\frac{1}{2}}/l_{1} - 1 \\ f_{2}(\psi,\theta,\varphi) = \left[\sqrt{2r^{2} + h^{2} - \frac{r^{2}}{2}\left(x_{l} + \sqrt{3}x_{m} + \sqrt{3}y_{l} + 3y_{m} + \frac{2\sqrt{3}}{r}hz_{m} + \frac{2}{r}hz_{l}\right)}\right]^{\frac{1}{2}}/l_{2} - 1 \\ f_{3}(\psi,\theta,\varphi) = \left[\sqrt{2r^{2} + h^{2} - \frac{r^{2}}{2}\left(x_{l} - \sqrt{3}x_{m} - \sqrt{3}y_{l} + 3y_{m} - \frac{2\sqrt{3}}{r}hz_{m} + \frac{2}{r}hz_{l}\right)}\right]^{\frac{1}{2}}/l_{3} - 1 \end{cases}$$
(6)

1

(2) 在搜索空间内对粒子群进行初始化,令 x =(ψ , θ , φ), 搜索速度为v。为防止计算结果出现多 解, 提高运算精度, 故给定粒子大小及搜索速度的约 束空间, 即粒子最大值 x_{max} 和最小值 x_{min} , 以及粒子 最大搜索速度 v_{max} 和最小搜索速度 v_{min} 。定义种群 规模为 n, 最大迭代次数 m, 惯性权重 w 的最大值 w_{max} 及最小值 w_{min} 并初始化种群的位置速度。

(3)令 $F = (f_1, f_2, f_3)$, 设粒子的适应度函数为

$$f(j) = \frac{1}{3} (\parallel \boldsymbol{F} \parallel_2) \tag{7}$$

式中 f(j)——第j个粒子的适应度函数

|| *F* **|| ₂</mark>───向量** *F* **的 2-范数**

(4)粒子位置的更新过程:根据粒子当前状态,
 比较粒子的适应度函数值f与粒子自身最优历史位置 *p*_{bestp} 对应的适应度函数值 *f*_{best_valuep},如果 *f* <

 f_{best_valuep} ,则此时粒子对应的 p_{bestp} 就是当前粒子位置; 比较每个粒子的 f_{best_valuep} 与种群中运行最优的粒子 p_{bestg} 对应的适应度函数值 f_{best_valueg} ,如果 $f_{best_valuep} < f_{best_valueg}$,则 p_{bestg} 就是 p_{bestp} 所对应的粒子位置。

(5)计算惯性权重

$$w = \begin{cases} w_{\min} + (f(i) - f_{best_valueg}) (w_{\max} - w_{\min}) / \\ (f_{vagf} - f_{best_valuep}) (f(i) \leq f_{vagf}) \\ w_{\max} (f(i) > f_{vagf}) \end{cases}$$
(8)

式中 *f_{vag}* 整个种群适应度函数的平均值 更新粒子的速度和位置

$$\boldsymbol{v}_{ij}^{k+1} = w^{k} \boldsymbol{v}_{ij}^{k} + C_{1} R_{1} (\boldsymbol{p}_{bestpij} - \boldsymbol{x}_{ij}^{k}) + C_{2} R_{2} (\boldsymbol{p}_{bestgi} - \boldsymbol{x}_{ij}^{k})$$
(9)

$$\boldsymbol{x}_{ij}^{k+1} = \boldsymbol{x}_{k+1}^{k} + \boldsymbol{v}_{ij}^{k+1}$$
(10)

式中, $i = 1, 2, \dots, n; j = 1, 2, 3; k = 0, 1, 2, \dots, m; C_1$ 和 C₂称为学习因子, R_1 和 R_2 为服从[0, 1]分布的随机 数。

进行越界限制

$$\boldsymbol{v}_{ij}^{k+1} = \begin{cases} \boldsymbol{v}_{\max} & (\boldsymbol{v}_{ij}^{k+1} \ge \boldsymbol{v}_{\max}) \\ \boldsymbol{v}_{\min} & (\boldsymbol{v}_{ij}^{k+1} \le \boldsymbol{v}_{\min}) \end{cases}$$
(11)

$$\boldsymbol{x}_{ij}^{k+1} = \begin{cases} \boldsymbol{x}_{\max} & (\boldsymbol{x}_{ij}^{k+1} \ge \boldsymbol{x}_{\max}) \\ \boldsymbol{x}_{\min} & (\boldsymbol{x}_{ij}^{k+1} \le \boldsymbol{x}_{\min}) \end{cases}$$
(12)

(6)为了改善粒子群算法的种群多样性,在算法中加入随机变异。

 $\boldsymbol{x}_{il}^{k} = \boldsymbol{\lambda}_{1} \boldsymbol{p}_{bestp} \quad (\boldsymbol{\lambda}_{2} > 0.8) \quad (13)$ 式中, \boldsymbol{x}_{il}^{k} 为在第 k 次进化、第 i 个粒子中所需辨识变 量中的一个随机变量, λ_1 、 λ_2 为服从[0,1]分布的随机数。

(7)若迭代次数未达到最大迭代次数 m,则返回步骤(3);若达到最大迭代次数则转到步骤(8)。

(8)定义弦截法的迭代精度为 10^{-4} ,并将由粒 子群算法所得到的结果作为迭代初值,即 $x_0 = (\psi_0, \theta_0, \varphi_0)$,将 $x_0 + 0.0001$ 作为其前一个迭代值。

(9)更新过程:迭代格式为

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \boldsymbol{Y}(\boldsymbol{x}_k)^{-1} \boldsymbol{F}(\boldsymbol{x}_k)$$
(14)

其中

$$Y(\mathbf{x}_{k}) = \frac{f_{1}(\psi_{k},\theta_{k-1},\varphi_{k-1}) - f_{1}(\psi_{k-1},\theta_{k-1},\varphi_{k-1})}{\psi_{k}-\psi_{k-1}} \quad \frac{f_{1}(\psi_{k-1},\theta_{k},\varphi_{k-1}) - f_{1}(\psi_{k-1},\theta_{k-1},\varphi_{k-1})}{\theta_{k}-\theta_{k-1}} \quad \frac{f_{1}(\psi_{k-1},\theta_{k-1},\varphi_{k-1}) - f_{1}(\psi_{k-1},\theta_{k-1},\varphi_{k-1})}{\varphi_{k}-\varphi_{k-1}} - \frac{f_{1}(\psi_{k-1},\theta_{k-1},\varphi_{k-1}) - f_{1}(\psi_{k-1},\theta_{k-1},\varphi_{k-1})}{\varphi_{k}-\varphi_{k-1}} - \frac{f_{1}(\psi_{k-1},\theta_{k-1},\varphi_{k-1}) - f_{2}(\psi_{k-1},\theta_{k-1},\varphi_{k-1})}{\varphi_{k}-\varphi_{k-1}} - \frac{f_{2}(\psi_{k-1},\theta_{k-1},\varphi_{k-1}) - f_{2}(\psi_{k-1},\theta_{k-1},\varphi_{k-1})}{\varphi_{k}-\varphi_{k-1}} - \frac{f_{2}(\psi_{k-1},\theta_{k-1},\varphi_{k-1})}{\varphi_{k}-\varphi_{k-1}} - \frac{f_{2}(\psi_{k-1},\varphi_{k-1})}{\varphi_{k}-\varphi_{k-1}} - \frac{f_{2}(\psi_{k-1},\varphi_{k-1})}{\varphi_{k}-\varphi_{k-1$$

(10)如果迭代精度未达到要求,则返回步骤(8)继续计算;若达到精度要求,则退出计算;若迭代次数大于500次,则强制退出计算,并提示迭代不收敛。

3 并联机构正运动学数值算例

3.1 3-UCU 机构数值算例

3-UCU 并联机构固定平台及运动平台半径 r = 38.5 mm,运动坐标系 $O_p X_p Y_p Z_p$ 原点相对于固定坐

标系 $O_B X_B Y_B Z_B$ 的位置坐标为 P = (0,0,250),令机 构运动平台呈现 5 种典型运动姿态,即分别绕 3 个 轴的转角、绕 X_B 和 Y_B 轴的复合转角以及同时绕 3 个轴的复合转角,具体转角目标值如表 1~3 所示; 根据目标值,通过机构逆运动学方程求得连杆长度, 并将其作为 AWPSO - SM、AWPSO 算法及弦截法的 输入量;对于 AWPSO - SM,设粒子群的种群规模为 n = 30,最大迭代次数为 m = 200、 $x_{max} = 0.87$ rad、 $x_{min} = -0.87$ rad、 $v_{max} = 0.87$ rad/s、

表 1 3-UCU AWPSO-SM 计算结果 Tab.1 3-UCU results of AWPSO-SM

答周		ψ /rad			θ /rad			φ/rad			
异内	目标值	实际值	绝对误差	目标值	实际值	绝对误差	目标值	实际值	绝对误差	次数	
1	0.08299	0. 082 98	1×10^{-5}	0	0	0	0	0	0	203	
2	0	0	0	0.19635	0. 196 35	0	0	0	0	203	
3	0	0	0	0	0	0	0. 174 53	0. 174 53	0	202	
4	0. 597 57	0. 597 57	0	-0.19416	-0.19416	0	0	0	0	203	
5	0. 285 25	0. 285 25	0	-0.55984	-0.559 84	0	0. 084 91	0. 084 91	0	205	

表 2	3 –	UCU	AWPSO	算法计算结果
-----	-----	-----	-------	--------

Tab. 2 3 - UCU results of AWPSO algorithm

答周		ψ /rad			θ /rad			$\varphi/\operatorname{rad}$		迭代
异凹	目标值	实际值	绝对误差	目标值	实际值	绝对误差	目标值	实际值	绝对误差	次数
1	0.08299	0.08319	-2×10^{-4}	0	0	0	0	0	0	1 000
2	0	0	0	0. 196 35	0. 196 32	3×10^{-5}	0	0	0	1 000
3	0	0	0	0	0	0	0. 174 53	0.174 60	-7×10^{-5}	1 000
4	0. 597 57	0. 597 39	1.8 $\times 10^{-4}$	-0.19416	-0.192 55	-1.61×10^{-3}	0	-0.100 81	0.10081	1 000
5	0. 285 25	0. 281 62	3.63 × 10 $^{-3}$	-0.55984	- 0. 560 01	1.7 × 10 $^{-4}$	0.08491	0	0.084 91	1 000

(15)

表 3 3-UCU 弦截法计算结果 Tab. 3 3-UCU results of secant method

答届		ψ /rad			θ /rad			$\varphi/\operatorname{rad}$			
并内	目标值	实际值	绝对误差	目标值	实际值	绝对误差	目标值	实际值	绝对误差	次数	
1	0. 082 99	NaN	NaN	0	NaN	NaN	0	NaN	NaN	437	
2	0	NaN	NaN	0. 196 35	NaN	NaN	0	NaN	NaN	308	
3	0	NaN	NaN	0	NaN	NaN	0. 174 53	NaN	NaN	42	
4	0. 597 57	不收敛	—	- 0. 194 16	不收敛	—	0	不收敛	—	> 500	
5	0. 285 25	NaN	NaN	- 0. 559 84	NaN	NaN	0. 084 91	NaN	NaN	434	

 $\omega_{max} = 1.2 \ \omega_{min} = 0.3 \ C_1 = C_2 = 1.8,$ 设种群初值为 [1,1,1]。对于AWPSO 算法,设粒子群的种群规模 为n' = 100,最大迭代次数为m' = 1000,其余参数不 变。对于弦截法设其迭代初值也为[1,1,1]。然后 对机构的正运动学方程进行求解,并将3种方法所 求结果进行对比,其结果如表 1~3 所示。

从表 1 和表 2 可以看出, AWPSO - SM 弥补了 AWPSO 的局部收敛性,且仅需较少的迭代次数便可 以获得较为精确的结果。从表 3 可以看出,当初值 与目标值相差较大时,弦截法处于发散状态,而 AWPSO - SM 则避免了该问题对计算结果的影响, 能够精确地对 3 - UCU 并联机构的正运动学方程进 行求解。

3.2 3-PPR 机构数值算例

3-PPR 并联机构具有 2 个平移自由度和 1 个转动自由度,根据文献[12]可知 3-PPR 并联机构的逆运动学方程为

$\int d_1 = -\frac{r}{2}\cos\theta - \frac{\sqrt{3}r}{2}\sin\theta$	$\theta + x + \frac{r}{2}$
$\begin{cases} d_2 = -\frac{r}{2}\cos\theta + \frac{\sqrt{3}r}{2}\sin\theta \end{cases}$	$\theta + x + \frac{r}{2} \tag{16}$
$d_3 = r\sin\theta + y$	

式中, $d = (d_1, d_2, d_3)$ 为驱动器位移,设机构固定平 台与运动平台的半径相等,即 $r = 40 \text{ mm}_{\odot}$

依照上述求解步骤,利用文献[12]中所列目标 值进行数值仿真,对于 AWPSO - SM,设粒子群的种 群规模为 n = 30,最大迭代次数为 $m = 200 \ x_{max1} =$ 0.42 rad、 $x_{min1} = -0.42$ rad、 $v_{max1} = 0.42$ rad/s、 $v_{min1} =$ -0.42 rad/s、 $x_{max2} = 60$ mm、 $x_{min2} = -60$ mm、 $v_{max2} =$ 60 mm/s、 $v_{min2} = -60$ mm/s、 $\omega_{max} = 1.2$ 、 $\omega_{min} = 0.3$ 、 $C_1 = C_2 = 1.8$,设种群初值为[10,10,10]。对于 AWPSO 算法,设粒子群的种群规模为 n' = 100,最大迭 代次数为 m' = 1000,其余参数不变。对于弦截法设其 迭代初值也为[10,10,10]。其结果如表 4~6 所示。

本 届		x∕mm		y/mm			θ /rad			
异例 -	目标值	实际值	绝对误差	目标值	实际值	绝对误差	目标值	实际值	绝对误差	次数
1	10	10	0	15	15	0	0.08727	0.087 27	0	203
2	10	10	0	20	20	0	0. 174 53	0.174 53	0	203
3	15	15	0	15	15	0	0. 174 53	0.174 53	0	203
4	15	15	0	20	20	0	0.2618	0.2618	0	203
5	20	20	0	15	15	0	0. 174 53	0. 174 53	0	203

表 4 3 – PPR AWPSO – SM 计算结果 Tab. 4 3 – PPR results of AWPSO – SM

表 5	3-PPR AWPSO 算法计算结果
Fah 5	3 – PPR results of AWPSO algorith

答周	x/mm				y/mm			θ /rad			
异ற	目标值	实际值	绝对误差	目标值	实际值	绝对误差	目标值	实际值	绝对误差	次数	
1	10	9. 759 37	0. 240 63	15	16. 167 94	- 1. 167 94	0.087 27	0.083 84	3. 43×10^{-3}	1 000	
2	10	10. 204 19	-0.204 19	20	19.03633	0.963 67	0. 174 53	0. 184 2	-9.67×10^{-3}	1 000	
3	15	15. 308 9	0. 308 9	15	13.6707	1. 329 3	0. 174 53	0. 181 59	-7.06×10^{-3}	1 000	
4	15	14. 495 86	0. 504 14	20	19. 125 1	0. 874 9	0.2618	0. 247 16	0.014 64	1 000	
5	20	19. 570 45	0. 429 55	15	16.66518	- 1. 665 18	0. 174 53	0. 160 04	0.014 49	1 000	

从表4和表5同样可以看出,AWPSO-SM有 效弥补了AWPSO的局部收敛性,且所需迭代次数 更少、精度更高。从表6可以看出,初值对弦截法求 解精度的影响较大,而 AWPSO - SM 则避免了初值 问题对计算结果的影响。故相较 AWPSO 及弦截 法,其能够有效地对 3 - PPR 并联机构的正运动学

表	6	3-PPR 弦截法计算结果
Tab.6	3	- PPR results of secant method

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		x/mm		y/mm			$\theta$ rad			
异ற	目标值	实际值	绝对误差	目标值	实际值	绝对误差	目标值	实际值	绝对误差	次数
1	10	NaN	NaN	15	NaN	NaN	0.08727	NaN	NaN	5
2	10	- 29. 392 31	39. 392 31	20	20	0	0. 174 53	9.25024	-9.07571	5
3	15	- 24. 392 31	39. 392 31	15	15	0	0. 174 53	9.25024	-9.07571	5
4	15	- 23. 637 03	38.637 03	20	20	0	0.2618	9. 162 98	- 8. 901 18	5
5	20	- 19. 392 31	39. 392 31	15	15	0	0. 174 53	9. 250 24	-9.07571	5

方程进行求解。

# 3.3 4-SPS 机构数值算例

4-SPS 并联机构具有 3 个转动自由度和 1 个 垂直方向平移自由度,根据文献[15]及式(1)可知 4-SPS 并联机构的逆运动学方程为

$$\begin{cases} l_{1} = \sqrt{(ax_{l} - ax_{m} - b)^{2} + (ay_{l} - ay_{m} + b)^{2} + (az_{l} - az_{m} + z)^{2}} \\ l_{2} = \sqrt{(ax_{l} + ax_{m} - b)^{2} + (ay_{l} + ay_{m} - b)^{2} + (az_{l} + az_{m} + z)^{2}} \\ l_{3} = \sqrt{(-ax_{l} + ax_{m} + b)^{2} + (-ay_{l} + ay_{m} - b)^{2} + (-az_{l} + az_{m} + z)^{2}} \\ l_{4} = \sqrt{(-ax_{l} - ax_{m} + b)^{2} + (-ay_{l} - ay_{m} + b)^{2} + (-az_{l} - az_{m} + z)^{2}} \end{cases}$$

$$(17)$$

式中, $l = (l_1, l_2, l_3, l_4)$ 为机构连杆杆长;a为运动

平台边长的 1/2,设 *a* = 100 mm; *b* 为固定平台边长的 1/2,设 *b* = 200 mm。

依照上述求解步骤,利用表 7 中所列目标值进 行数值仿真,对于 AWPSO - SM,设粒子群种群规模 为 n = 30,最大迭代次数为  $m = 200_x x_{max1} = 1.22$  rad、  $x_{min1} = -1.22$  rad、 $v_{max1} = 1.22$  rad/s、  $x_{max2} = 300$  mm、 $x_{min2} = -80$  mm、 $v_{max2} = 100$  mm/s、 $v_{min2} = -100$  mm/s、 $\omega_{max} = 1.2$ 、 $\omega_{min} = 0.3$ 、 $C_1 = C_2 = 1.8$ 。设种 群初值为[10,10,10,10]。对于 AWPSO 算法,设粒 子群的种群规模为 n' = 100,最大迭代次数为 m' = 1000,其余参数不变。对于弦截法设其迭代初值也 为[10,10,10,10]。其结果如表 7~9 所示。

#### 表 7 4-SPS AWPSO-SM 计算结果 Tab.7 4-SPS results of AWPSO-SM

		ult/rad			A/rad			(n∕rad			7/mm		迭代
首届		φ/ fau			0/ 1au			φ/ fau			2/ 11111		
升内	目标值	实际值	绝对误差	目标值	实际值	绝对误差	目标值	实际值	绝对误差	目标值	实际值	绝对误差	次数
1	0. 558 51	0. 558 51	0	0	0	0	0	0	0	200	200	0	204
2	0	0	0	0. 785 4	0. 785 4	0	0	0	0	200	200	0	202
3	0. 785 4	0. 785 4	0	0.62832	0.62832	0	0	0	0	100	100	0	204
4	0. 523 6	0. 523 6	0	0. 523 6	0. 523 6	0	1.0472	1.047 2	0	200	200	0	206
5	0.098 17	0.098 17	0	0.4488	0.4488	0	0. 785 4	0.7854	0	175	175	0	205

#### 表 8 4-SPS AWPSO 算法计算结果

Tab. 8	4 – SPS	s results	of a	AWPSO	algorithm
--------	---------	-----------	------	-------	-----------

算例	$\psi$ /rad			$\theta$ /rad			$\varphi/\mathrm{rad}$			z/mm			迭代
	目标值	实际值	绝对误差	目标值	实际值	绝对误差	目标值	实际值	绝对误差	目标值	实际值	绝对误差	次数
1	0. 558 51	0. 558 38	1.3 $\times 10^{-4}$	0	0	0	0	0	0	200	200	0	1 000
2	0	0	0	0. 785 4	0. 785 34	$6 \times 10^{-5}$	0	0	0	200	200	0	1 000
3	0. 785 4	0.8074	- 0. 022	0. 628 32	0. 637 79	9.47 $\times 10^{-3}$	0	0	0	100	97. 308 25	2.69175	1 000
4	0. 523 6	0.932 86	-0.409 26	0. 523 6	0. 775 9	-0.2523	1.0472	1.22173	-0. 174 53	200	130. 614	69.386	1 000
5	0.09817	0.098 57	$4 \times 10^{-4}$	0. 448 8	0. 410 16	0.038 64	0. 785 4	0. 294 7	0.4907	175	200	-25	1 000

# 表9 4-SPS 弦截法计算结果

Tab. 9 4 - SPS results of secant method

算例	$\psi$ / rad			$\theta$ /rad			$\varphi$ /rad			z/mm			迭代
	目标值	实际值	绝对误差	目标值	实际值	绝对误差	目标值	实际值	绝对误差	目标值	实际值	绝对误差	次数
1	0. 558 51	Inf	Inf	0	0	0	0	Nan	Nan	200	0	200	402
2	0	NaN	NaN	0.7854	NaN	NaN	0	NaN	NaN	200	NaN	NaN	490
3	0. 785 4	Inf	Inf	0.62832	0	0.62832	0	NaN	NaN	200	0	200	420
4	0. 523 6	发散	_	0. 523 6	发散	_	1.0472	发散	_	200	发散	_	>500
5	0.09817	发散	_	0.4488	发散	_	0.7854	发散	_	175	发散	_	>500

表 7 和表 8 再次显示了 AWPSO - SM 相较 AWPSO 算法在求解精度以及迭代次数上的优越性。 从表 9 可以看出,当初值为[10,10,10,10]时,弦 截法无法对 4 - SPS 并联机构的正运动学问题进行 求解,而 AWPSO - SM 则避免了初值问题对计算结 果的影响。故 AWPSO - SM 算法也能精确、有效地 对 4 - SPS 并联机构的正运动学方程进行求解,进而 说明该算法针对并联机构正运动学问题的求解具有 一定的普适性。

#### 4 结束语

基于数值迭代算法与智能优化算法相结合的思 路,提出针对并联机构运动学正解问题的通用求解 算法:AWSPSO - SM 算法。针对 3 - UCU 并联机构, 对算法的详细求解过程进行了阐述;最后,依照算法 求解步骤,通过数值算例,分别对 3 - UCU、3 - PPR、 4 - SPS 并联机构的正运动学问题进行求解,并与 AWPSO 算法和弦截法进行了比较,从而对算法的有 效性及精确性进行了验证。由仿真结果可知,利用 AWPSO - SM 可以精确地对并联机构的正运动学问 题进行求解,避免了 AWPSO 局部收敛性和弦截法 初值问题对运算结果的影响。此外,该算法避免了 求导过程,运算过程简单快捷,相较 AWPSO 算法仅 需很少的迭代步骤便可以获得较为精确的运算结 果,具有良好的通用性。

参考文献

- 1 高天雷. 国内并联机床的发展[J]. 航空制造技术, 2010(4):60-62.
- GAO Tianlei. Domestic development of parallel machine tools[J]. Aeronautical Manufacturing Technology, 2010(4): 60 62. (in Chinese)
- 2 MAYHEW D, BACHRACH B, RYMER W Z, et al. Development of the MACARM—a novel cable robot for upper limb neurorehabilitation [C] // Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, 2005: 299 302.
- 3 DUAN B Y, QIU Y Y, ZHANG F S, et al. On design and experiment of the feed cable-suspended structure for super antenna[J]. Mechatronics, 2009, 19(4): 503 - 509.
- 4 黄昔光,廖启征,魏世民,等. 一般 6-6 型平台并联机构位置正解代数消元法[J]. 机械工程学报, 2009, 45(1): 56-61. HUANG Xiguang, LIAO Qizheng, WEI Shimin, et al. Forward kinematics analysis of the general 6-6 platform parallel mechanism based on algebraic elimination[J]. Chinese Journal of Mechanical Engineering, 2009, 45(1): 56-61. (in Chinese)
- 5 李鹭扬,吴洪涛. 一类 6-SPS 并联机构正运动学符号解分析[J]. 扬州大学学报:自然科学版, 2006, 9(3): 42-45. LI Luyang, WU Hongtao. A symbolic solution of forward kinematics analysis of a 6-SPS parallel mechanism [J]. Journal of Yangzhou University: Natural Science Edition, 2006, 9(3): 42-45. (in Chinese)
- 6 程世利,吴洪涛,姚裕,等.6-SPS并联机构运动学正解的一种解析化方法[J]. 机械工程学报,2010,46(9):26-31. CHENG Shili, WU Hongtao, YAO Yu, et al. An analytical method for the forward kinematics analysis of 6 - SPS parallel mechanisms[J]. Journal of Mechanical Engineering, 2010, 46(9):26-31. (in Chinese)
- 7 夏富杰. 空间并联机构运动分析的有限元法[J]. 机械科学与技术, 1998, 17(1): 60-62, 81. XIA Fujie. Finite element method of kinematic analysis of spatial mechanisms[J]. Mechanical Science and Technology, 1998, 17(1): 60-62, 81. (in Chinese)
- 8 LEE K M, SHAH D K. Kinematics analysis of a three degree of freedom in parallel actuated manipulator [J]. IEEE Journal of Robotics and Automation, 1988, 4(3): 354 - 360.
- 9 INNOCENTI C, CASTELLI V P. Forward kinematics of the general 6 6 fully parallel mechanism: an exhaustive numerical approach via a mono-dimensional-search algorithm [J]. ASME Journal of Mechanical Design, 1993, 115(4): 932-937.
- 10 车林仙,何兵,易建,等. 对称结构 Steward 机构位置正解的改进粒子群算法[J]. 农业机械学报,2008,39(10):158-163. CHE Linxian, HE Bing, YI Jian, et al. Improved particle swarm optimization for forward positional analysis of symmetrical Steward parallel manipulators[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(10): 158-163. (in Chinese)
- 11 戴文伟,吴洪涛,杨小龙. 6-3型 Steward 平台并联机构的运动学正解[J].中国制造业信息化,2012,41(17):43-46. DAI Wenwei, WU Hongtao, YANG Xiaolong. Numerical method for forward kinematics of 6-3 Steward platform parallel manipulator[J]. Machine Design and Manufacturing Engineering, 2012, 41(17):43-46. (in Chinese)
- 12 吴小勇,谢志江,宋代平,等. 基于改进蚁群算法的 3 PPR 并联机构位置正解研究[J/OL].农业机械学报,2015, 46(7):339-344. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? file_no = 20150748&flag = 1. DOI:10.6041/ j.issn.1000-1298.2015.07.048.

WU Xiaoyong, XIE Zhijiang, SONG Daiping, et al. Forward kinematics of 3 – PPR parallel mechanism based on improved ant colony algorithm [J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(7): 339 – 344. (in Chinese)

13 李明磊, 贾育秦. 6-SPS 并联机构位置正解的改进粒子群算法[J]. 现代制造工程, 2009(5): 106-110.
 LI Minglei, JIA Yuqin. Improved particle swarm optimization algorithm for forward positional analysis of 6 - SPS parallel manipulators[J]. Modern Manufacturing Engineering, 2009(5): 106-110. (in Chinese)

microchannels[J]. Journal of Micromechanics and Microengineering, 2010, 20(4):045018.

- 5 CHI Y L, SANG Y L. Pressure drop of two-phase plug flow in round mini-channels: influence of surface wettability [J]. Experimental Thermal and Fluid Science, 2008, 32(8):1716-1722.
- 6 FOX H W, ZISMAN W A. The spreading of liquids on low energy surfaces, I. polytetra-fluoroethylene [J]. Journal of Colloid Science, 1950, 5(6): 514-531.
- 7 YOUNG T. An essay on the cohesion of fluids [J]. Philosophical Transactions of the Royal Society of London, 1805, 95:65-87.
- 8 YOUNG T. Experiments and calculations relative to physical optics [J]. Philosophical Transactions of the Royal Society of London, 1804, 94: 1-16.
- 9 鲁钟琪.两相流与沸腾传热[M].北京:清华大学出版社,2002:41-64.
- 10 SUNG M K, MUDAWAR I. Consolidated method to predicting pressure drop and heat transfer coefficient for both subcooled and saturated flow boiling in microchannel heat sinks [J]. International Journal of Heat and Mass Transfer, 2012, 55(13-14):3720-3731.
- 11 LEE J, MUDARWAR I. Two-phase flow in high heat flux microchannel heat sink for refrigeration cooling applications: part I-pressure drop characteristics [J]. International Journal of Heat and Mass Transfer, 2005, 48(5): 928 940.
- 12 阎昌琪. 气液两相流[M]. 哈尔滨:哈尔滨工程大学出版社, 2007:160-167.
- 13 胡丽琴,罗小平,廖寿学.矩形微细通道纳米流体沸腾流动阻力特性研究[J].中南大学学报:自然科学版,2014,45(7): 2209-2216.

HU Liqin, LUO Xiaoping, LIAO Shouxue. Research on boiling flow resistance of nanofluid in rectangular microchannels [J]. Journal of Central South University: Science and Technology, 2014, 45(7):2209-2216. (in Chinese)

- 14 CHIWOONG C, JEONG S, DONG Inyu, et al. Flow boiling behaviors in hydrophilic and hydrophobic microchannels [J]. Experimental Thermal and Fluid Science, 2011, 35(5):816-824.
- 15 LOCKHART R W, MARTINELLI R C. Proposed correlation of data for isothermal two-phase two-component flow in pipes [J]. Chemical Engineering Progress, 1949,45:39 - 48.
- 16 FRANCISCO R, ALEJANDRO L. Two phase flow pressure drop in multiport mini-channel tubes using R134a and R32 as working fluids [J]. International Journal of Thermal Sciences, 2015,92:17 - 33.
- 17 MISHIMA K, HIBIKI T, Some characteristics of air-water two-phase flow in small diameter vertical tubes [J]. International Journal of Multiphase Flow, 1996,22(4):703 - 712.
- 18 QU W, MUDAWAR I. Measurement and prediction of pressure drop in two-phase micro-channel heat sinks [J]. International Journal of Heat and Mass Transfer, 2003, 46(15): 2737 - 2753.
- 19 ZHANG W, HIBIKI T, MISHIMA K, et al. Correlations of two-phase frictional pressure drop and void fraction in mini-channel [J]. International Journal of Heat and Mass Transfer, 2010, 53(1-3):453-465.
- 20 刘波,罗小平,谢鸣宇.纳米制冷剂在微通道内两相摩擦压降实验研究[J].低温工程,2015(4):20-26.
- LIU Bo, LUO Xiaoping, XIE Mingyu. Experimental study of two-phase fractional pressure drop of nanorefrigerant through microchannels[J]. Cryogenics, 2015(4):20-26. (in Chinese)

#### (上接第352页)

- 14 余胜威. MATLAB 优化算法案例分析与应用[M]. 北京:清华大学出版社, 2014.
- 15 王庚祥,原大宁,刘宏昭,等. 空间4-SPS/CU并联机构运动学分析[J/OL]. 农业机械学报,2012,43(3):207-212, 199. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? file_no=20120337&flag=1. DOI:10.6041/j.issn.1000-1298.2012.03.037.

WANG Gengxiang, YUAN Daning, LIU Hongzhao, et al. Kinematic analysis of spatial 4 – SPS/CU parallel mechanism[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(3): 207 – 212, 199. (in Chinese)

16 张艳伟,韦斌,王南,等. 空间转动 3 - SPS - S 并联机构运动学性能分析[J/OL]. 农业机械学报,2012,43(4):212 - 215,207. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? file_no = 20120440&flag = 1. DOI:10.6041/j.issn. 1000-1298.2012.04.040.

ZHANG Yanwei, WEI Bin, WANG Nan, et al. Kinematic performance analysis of 3 - SPS - S spatial rotation parallel mechanism [J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(4): 212 - 215, 207. (in Chinese)

17 崔国华,张艳伟,张英爽,等. 空间转动型 3-SPS/S 并联机器人的构型设计分析[J]. 吉林大学学报,2009,39(增刊1): 200-205.

CUI Guohua, ZHANG Yanwei, ZHANG Yingshuang, et al. Configuration design and analysis of a new 3 - SPS/S spatial rotation parallel manipulator[J]. Journal of Jilin University, 2009, 39(Supp. 1): 200 - 205. (in Chinese)