doi:10.6041/j.issn.1000-1298.2016.08.052

基于解域的四位置空间 RCCC 机构综合

曹 阳 韩建友

(北京科技大学机械工程学院,北京 100083)

摘要:将 Burmester 理论从平面及球面拓展到一般空间领域,给出了空间 RCCC 机构的一种综合方法。一般情况 下,综合 RCCC 机构最多能给定连杆的 3 个位置。而 4C 机构的四位置综合可以得到无穷多解,因此可先建立 4C 机构无穷多解的解域,再在解域中找到主动杆与机架间 C 副无滑动位移的点作为 R 副,从而得到 RC 连架杆,最终 获得 RCCC 机构。具体方法为:首先根据给定的 4 个位置的姿态角求解出满足要求的解曲线,并根据解曲线建立 球面 4R 机构解域。其次在球面 4R 机构解域上选取一点作为 RCCC 机构运动副轴线方向的矢量,再与给定的 4 个 位置的空间坐标结合求解出满足要求的解直线,进而根据解直线建立空间 4C 机构的解域。最后在空间 4C 机构的 解域图中找到通过 4 个位置时主动杆与机架间 C 副无滑动位移的点作为 R 副,构成满足要求的空间 RCCC 机构。 本文最后通过给出的数值示例证明了该方法的正确性和有效性。

关键词:空间 RCCC 机构;四位置综合;解域方法

中图分类号: TH112 文献标识码: A 文章编号: 1000-1298(2016)08-0399-07

Synthesis of RCCC Linkage to Visit Four Given Positions Based on Solution Region

Cao Yang Han Jianyou

(School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China)

Abstract: The generalization of spherical rectification theory was considered to spatial RCCC linkages to visit four given positions. The problem of synthesis of spatial four-bar linkages of the RCCC type for rigidbody guidance with four given positions was focused, in which R denoting a revolute, C denoting a cylindrical kinematic pair. While synthesis equations for CC and RC dyads were available in literatures, the synthesis of spatial RCCC four-bar linkages required special attention due to its asymmetric topology. However, infinitely many exact solutions to the problem of CC-dyad synthesis existed for the four-pose rigid-body-guidance problem, the RC-dyad synthesis admitted only approximate solutions, thus the RCCC linkage was capable of visiting four positions. A solution region theory was proposed to synthesis a RCCC linkage which was to visit four positions. Firstly, the expression of spherical Burmester curve and the classification was given to make a solution region. The second solution region (moment solution region) was born follow-up by picking a point on Burmenster curve solution region. Secondly, the second region which also was the spatial 4C linkage solution region, while the linkage was 2-DOF. Through restricting the prismatic joint between drive and ground on spatial 4C linkage solution region, a spatial RCCC linkage which can visit four given positions was got. Finally, two examples were given which proved that the theory was validated and correct.

Key words: spatial RCCC linkage; four positions synthesis; solution region method

基金项目: 国家自然科学基金项目(51275034)

收稿日期: 2016-01-19 修回日期: 2016-02-24

作者简介:曹阳(1988—),男,博士生,主要从事机构分析和综合理论及机构 CAD 研究, E-mail: ycs@126.com

通信作者:韩建友(1956—),男,教授,博士生导师,主要从事机构综合理论、机构动平衡及机构 CAD 研究, E-mail: jyhan@ ustb. edu. cn

引言

平面四杆机构和球面四杆机构在现实生活中已 得到广泛的应用,而空间 RCCC 四杆机构也受到越 来越多学者的关注^[1-2]。由于 RCCC 机构可以衍生 出平面四杆机构、球面四杆机构和各种不含球面副 的空间四杆机构,因此对 RCCC 机构位置综合问题 进行研究,不仅具有实际应用价值,而且也有理论意 义^[2]。RCCC 机构作空间运动的构件,可实现空间 给定的几个位置,且比多自由度的机器人机构具有 稳定性好、可靠性高、节省成本等优势。Burmester 理论指出,任意2个圆心曲线点(或圆点曲线点)可 以产生1组满足导引要求的四杆机构。由于球面机 构圆心曲线(或圆点曲线)计算的复杂性和选取的 盲目性,加州大学埃尔湾分校 Robotic 和 Automation 实验室在综合软件 SphinxPC 中提出了"类型图"的 方法^[3]。MCCARTHY 等^[4-6]对 Burmester 问题进行 了扩展,使其应用于球面四杆机构五位置问题。相 比于五位置综合问题,四位置综合问题的难点在于 如何在无穷多满足给定四位置要求的机构中选出无 缺陷的机构。对此,韩建友等^[7-12]在解决平面四杆 机构和球面四杆机构的四位置综合问题时提出了解 域综合方法,运用该方法能够在解域上方便地选择 满足要求的机构。同时,在多杆机构位置综合方向, 韩建友等[13-14]给出了平面多杆机构四位置综合的 解域综合方法,该方法是通过先给定1个开链的4 个位置,求出满足要求的全部解曲线,再根据解曲线 建立1个空间解域,最终综合出符合要求的机构。 此外,CHIANG^[15]对球面机构的综合问题进行了较 全面的论述。LAROCHELLE 等^[16] 对空间 CC 杆组 的五位置问题进行了分析。LAROCHELLE 等^[17-18] 对 4C 机构多于五位置刚体导引机构的综合问题进 行了研究,并得到了近似解。在这之后 LAROCHELLE^[19]进一步对4C机构的连杆运动曲线 进行分析,并给出了视窗分析界面。BAI等^[20]对 4C 机构的五位置问题提出了半图解综合法,通过该 方法可以得到符合要求的稳健机构解。

本文将平面和球面的四位置解域综合方法扩展 应用于空间 RCCC 机构的四位置综合问题。所提出 的综合方法具体步骤为:首先根据 4 个给定位置的 姿态角,推导球面布氏曲线的表达式(即解曲线); 运用解曲线建立解域^[9];然后在解域上选取无缺陷 的点,从而得到两组方向矢量,再通过得到的方向矢 量和给定的空间 4 个位置推导得到综合 4C 机构的 解直线;运用解直线建立 4C 机构的解域;在解域图 中分析空间 4C 机构的主动杆与机架间 C 副在通过 4 个位置时滑动位移是否为零来判断运动副的性质,如 果为零即可选为 R 副,最终可以得到 RCCC 机构。

1 四位置综合方法

1.1 CC 杆组几何参数表示及相应公式推导

CC 杆组的空间运动可以表示为平移和转动的 合成。空间 CC 杆组(图 1)有两组约束条件,即第 一位置到第 m 位置的夹角 α 不变和第一位置到第 m 位置的杆长 h 不变。这样在构成机构时可以推导 出 2n 个方程(n = m - 1)。

of CC dyad

图 1 中直线 L_1 和 L_2 表示 CC 杆组运动副的 2 条轴线。矢量 u_0 表示初始位置直线 L_2 的方向,矢 量 u_j 表示第 i 位置直线 L_2 的方向(i = j + 1),矢量 v表示直线 L_1 的方向。矢量 n_0 和 n_j 分别表示初始位 置和第 i 位置直线 L_1 与 L_2 间公垂线的方向,h 表示 公垂线的长度, P_1 、 P_2 分别表示初始位置直线 L_1 、 L_2 与公垂线的交点, P_{1j} 、 P_{2j} 分别表示第 i 位置直线 L_1 、 L_2 与公垂线的交点。 θ 表示从初始位置到第 i 位置 C 副转过的角度, $s_j - s_0$ 表示从初始位置到第 i 位置 C 副的滑动位移。

方向矢量 **u**₀ 与方向矢量 **v** 之间的夹角在运动 过程中保持不变,可以得到定交错角方程

 $\boldsymbol{u}_{j}^{^{\mathrm{T}}}\boldsymbol{v} = \boldsymbol{u}_{0}^{^{\mathrm{T}}}\boldsymbol{v} \equiv \cos\alpha \quad (j = 1, 2, \dots, n) \quad (1)$ 其中 $n = m - 1, \boldsymbol{u}_{j}$ 是第 i + 1 个位置的方向向量,可 以通过一个刚体转动矩阵 $\boldsymbol{C}_{j}^{^{[8]}} \boldsymbol{f} = \boldsymbol{u}_{0}$ 得到

$$\boldsymbol{u}_{j} = \boldsymbol{C}_{j} \boldsymbol{u}_{0} \quad (j = 1, 2, \cdots, n) \tag{2}$$

将式(2)代入式(1),有

$$\boldsymbol{u}_{0}^{\mathrm{T}}(\boldsymbol{C}_{j}^{\mathrm{T}}-\boldsymbol{I})\boldsymbol{v}=0 \quad (j=1,2,\cdots,n) \quad (3)$$

根据运动过程中杆长不变的条件,有^[20]

$$\boldsymbol{u}_{0}^{\mathrm{T}}(\boldsymbol{T}_{j}\boldsymbol{C}_{j})^{\mathrm{T}}\boldsymbol{v} + \boldsymbol{u}_{0}^{\mathrm{T}}(\boldsymbol{C}_{j}^{\mathrm{T}} - \boldsymbol{I})\overline{\boldsymbol{v}} + \overline{\boldsymbol{u}}_{0}^{\mathrm{T}}(\boldsymbol{C}_{j}^{\mathrm{T}} - \boldsymbol{I})\boldsymbol{v} = 0$$

(j = 1, 2, ..., n) (4)

式中 \overline{u}_0 、 \overline{v} ——方向矢量 u_0 、v 对原点的矩 T_i 是关于空间位置点 p_i 的反对称矩阵^[20],即

$$\mathbf{T}_{j} = \begin{bmatrix} 0 & -(\mathbf{p}_{j})_{z} & (\mathbf{p}_{j})_{y} \\ (\mathbf{p}_{j})_{z} & 0 & -(\mathbf{p}_{j})_{x} \\ -(\mathbf{p}_{j})_{y} & (\mathbf{p}_{j})_{x} & 0 \end{bmatrix}$$
(5)

向量 u_0 与 \overline{u}_0 垂直, v 与 \overline{v} 垂直, 所以有

$$\begin{cases} \boldsymbol{u}_{0}^{\mathrm{T}} \boldsymbol{\overline{u}}_{0} = 0\\ \boldsymbol{v}^{\mathrm{T}} \boldsymbol{\overline{v}} = 0 \end{cases}$$
(6)

方向矢量 u_0 、v 的模为 1,即

$$\begin{cases} \| \boldsymbol{u}_{0} \|^{2} = 1 \\ \| \boldsymbol{v} \|^{2} = 1 \end{cases}$$
(7)

对于四位置问题(n=3),由式(3)、(4)、(6)、 (7)可以组成10个方程,其中式(3)是基于单位向 量的一组方程,用来确定4个运动副轴线的方向。 式(4)是关于单位向量和其矩向量的一组方程,用 来确定4个运动副轴线在空间的实际位置,本文称 之为矩方程。

1.2 空间 4C 机构运动副轴线方向矢量的确定

空间 4C 机构中 4 个 C 副含有 4 个方向矢量, 在综合过程中,可以先把 4 个方向矢量交于一点进 行综合,其方法与球面 4R 机构综合方法类似,简述 如下:

令
$$\boldsymbol{b}_{j} = (\boldsymbol{C}_{j} - \boldsymbol{I})\boldsymbol{u}_{0}, \boldsymbol{\exists}(3)$$
可写成
 $\boldsymbol{b}_{j}^{\mathsf{T}}\boldsymbol{v} = 0 \quad (j = 1, 2, 3)$ (8)
令 $\boldsymbol{B} = [\boldsymbol{b}_{1}^{\mathsf{T}} \quad \boldsymbol{b}_{2}^{\mathsf{T}} \quad \boldsymbol{b}_{3}^{\mathsf{T}}]^{\mathsf{T}}, 则有$

$$Bv = O \tag{9}$$

式中 0----零矩阵

因为 v 为非零向量,所以 B 的行列式 | B | 的值 为零。展开行列式得到一个关于 x_e、y_e、z_e 的空间三 次曲面方程,其形式为

$$\begin{split} H_{1}x_{c}^{3} + H_{2}y_{c}^{3} + H_{3}z_{c}^{3} + H_{4}x_{c}^{2}y_{c} + H_{5}x_{c}^{2}z_{c} + H_{6}y_{c}^{2} + \\ H_{7}x_{c}z_{c}^{2} + H_{8}y_{c}^{2}z_{c} + H_{9}y_{c}z_{c}^{2} + H_{10}x_{c}y_{c}z_{c} = 0 \quad (10) \\ \mathbb{R} \operatorname{Kat}(7) \overline{\eta} \operatorname{\mathfrak{P}} \end{split}$$

$$x_c^2 + y_c^2 + z_c^2 = 1 \tag{11}$$

联立式(10)与式(11)得到一条空间三次曲线, 即球面 Burmester 圆点曲线。其形式为

$$\begin{cases} H_1 x_c^3 + H_2 y_c^3 + H_3 z_c^3 + H_4 x_c^2 y_c + H_5 x_c^2 z_c + H_6 y_c^2 + \\ H_7 x_c z_c^2 + H_8 y_c^2 z_c + H_9 y_c z_c^2 + H_{10} x_c y_c z_c = 0 \\ x_c^2 + y_c^2 + z_c^2 = 1 \end{cases}$$

式中, H_1 、 H_2 、 H_3 、 H_4 、 H_5 、 H_6 、 H_7 、 H_8 、 H_9 、 H_{10} 均为常数^[8]。设 $a_i = (C_i^T - I)v$,式(3)可写成

$$\boldsymbol{a}_{j}^{\mathrm{T}}\boldsymbol{u}_{0} = 0 \quad (j = 1, 2, 3)$$

$$\Leftrightarrow \boldsymbol{A} = \begin{bmatrix} \boldsymbol{a}_{1}^{\mathrm{T}} & \boldsymbol{a}_{2}^{\mathrm{T}} & \boldsymbol{a}_{3}^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}}, \boldsymbol{\overline{\mathbf{f}}}$$
(13)

$$Au_0 = O \tag{14}$$

将矩阵 A 以行列式 |A| 形式展开,因为 u_0 为非 零向量,所以有 |A| = 0,结合式(7)便得到球面 Burmester 圆心曲线,其形式如式(12)。圆点曲线与 圆心曲线上的点有一一对应关系,即圆点曲线上每 一点的值都有一圆心点的值与其对应。在圆点(或 圆心)曲线上任意选取两个不同的圆点值(或圆心 值)对应着一个符合要求的球面 4R 机构。建立球 面机构的解域,在解域上选取一点就确定了球面机 构4个矢量的方向。详细推导过程见文献[9]。

1.3 CC 杆组解直线的公式推导过程

对于四位置问题,n = 3,则式(4)可以写成 3 个 约束方程。矩方程中运动副轴线的方向矢量 u_0 、v已经在上一节通过在 Burmester 圆点(或圆心)曲线 上任意选取一组点获得,因此在本节中,矢量 u_0 、v作为已知量。式(4)中仅剩余 6 个未知量,可以将 式(4)简化成

$$c_{j}^{\mathrm{T}} \overline{u}_{0} + d_{j}^{\mathrm{T}} \overline{v} = r_{j} \quad (j = 1, 2, 3)$$

$$\ddagger \psi \qquad c_{j} = (C_{j}^{\mathrm{T}} - I) v \quad d_{j} = (C_{j} - I) u_{0}$$

$$r_{j} = -u_{0}^{\mathrm{T}} (T_{j}C_{j})^{\mathrm{T}} v$$

$$(15)$$

 u_0 、v 为 Burmester 曲线上任意选定的一组点。 式(15)中只有 \overline{u}_0 、 \overline{v} 为未知数。式(15)与式(6)一 共有5个方程

$$\begin{cases} \boldsymbol{c}_{1}^{\mathrm{T}} \, \boldsymbol{\overline{u}}_{0} + \boldsymbol{d}_{1}^{\mathrm{T}} \boldsymbol{\overline{v}} = \boldsymbol{r}_{1} \\ \boldsymbol{c}_{2}^{\mathrm{T}} \, \boldsymbol{\overline{u}}_{0} + \boldsymbol{d}_{2}^{\mathrm{T}} \boldsymbol{\overline{v}} = \boldsymbol{r}_{2} \\ \boldsymbol{c}_{3}^{\mathrm{T}} \, \boldsymbol{\overline{u}}_{0} + \boldsymbol{d}_{3}^{\mathrm{T}} \boldsymbol{\overline{v}} = \boldsymbol{r}_{3} \\ \boldsymbol{u}_{0}^{\mathrm{T}} \, \boldsymbol{\overline{u}}_{0} = \boldsymbol{0} \\ \boldsymbol{v}^{\mathrm{T}} \boldsymbol{\overline{v}} = \boldsymbol{0} \end{cases}$$
(16)

5个方程中含有6个未知量,必然有无穷多解。 设线性方程组(16)中的 \bar{u}_0 , \bar{v} 的解分别为

$$\begin{cases} \overline{\boldsymbol{u}}_{0} = (\overline{\boldsymbol{x}}, \overline{\boldsymbol{y}}, \overline{\boldsymbol{z}}) \\ \overline{\boldsymbol{v}} = (\overline{\boldsymbol{x}}_{0}, \overline{\boldsymbol{y}}_{0}, \overline{\boldsymbol{z}}_{0}) \end{cases}$$
(17)

合并写成

(12)

$$\overline{\boldsymbol{x}} = (\overline{\boldsymbol{x}}, \overline{\boldsymbol{y}}, \overline{\boldsymbol{z}}, \overline{\boldsymbol{x}}_0, \overline{\boldsymbol{y}}_0, \overline{\boldsymbol{z}}_0)$$
(18)

根据矢量矩的定义,有

$$\overline{\boldsymbol{u}}_0 = \boldsymbol{P}_1 \boldsymbol{u}_0 \tag{19}$$

$$\overline{\boldsymbol{v}} = \boldsymbol{P}_2 \boldsymbol{v} \tag{20}$$

式中 **P**₁ 和 **P**₂ 分别表示 **u**₀ 和 **v** 所在直线上任意一点。将式(19)、(20)代入式(15),有

 $c_{j}^{T}(P_{1}u_{0}) + d_{j}^{T}(P_{2}v) = r_{j}$ (*j*=1,2,3) (21) 设 P_{1}, P_{2} 分别是 u_{0} 直线和 v 直线公垂线的两 个交点,则有

$$\begin{cases} \boldsymbol{u}_{0}^{\mathrm{T}}(\boldsymbol{P}_{1}-\boldsymbol{P}_{2})=0\\ \boldsymbol{v}^{\mathrm{T}}(\boldsymbol{P}_{1}-\boldsymbol{P}_{2})=0 \end{cases}$$
(22)
(22)一共有5个方程

式(21)与式(22) — 共有5个方程

$$\begin{cases} \boldsymbol{c}_{1}^{\mathrm{T}}(\boldsymbol{P}_{1}\boldsymbol{u}_{0}) + \boldsymbol{d}_{1}^{\mathrm{T}}(\boldsymbol{P}_{2}\boldsymbol{v}) = r_{1} \\ \boldsymbol{c}_{2}^{\mathrm{T}}(\boldsymbol{P}_{1}\boldsymbol{u}_{0}) + \boldsymbol{d}_{2}^{\mathrm{T}}(\boldsymbol{P}_{2}\boldsymbol{v}) = r_{2} \\ \boldsymbol{c}_{3}^{\mathrm{T}}(\boldsymbol{P}_{1}\boldsymbol{u}_{0}) + \boldsymbol{d}_{3}^{\mathrm{T}}(\boldsymbol{P}_{2}\boldsymbol{v}) = r_{3} \\ \boldsymbol{u}_{0}^{\mathrm{T}}(\boldsymbol{P}_{1} - \boldsymbol{P}_{2}) = 0 \\ \boldsymbol{v}^{\mathrm{T}}(\boldsymbol{P}_{1} - \boldsymbol{P}_{2}) = 0 \end{cases}$$
(23)

式(23)中
$$P_1$$
和 P_2 为未知量,设其解为
 $P_2 = (x, y, z)$

$$\begin{cases} \boldsymbol{P}_{1} = (x, y, z) \\ \boldsymbol{P}_{2} = (x_{0}, y_{0}, z_{0}) \end{cases}$$
(24)

式(23)中有5个线性方程和6个未知数,因此 P_1 和 P_2 有无穷多解。经整理,可以将 P_1 和 P_2 解的集合 表示成2条空间直线,其形式如下

$$\frac{x - C_1}{k_1} = \frac{y - C_2}{k_2} = \frac{z - C_3}{k_3}$$
(25)

$$\frac{x_0 - C_4}{k_4} = \frac{y_0 - C_5}{k_5} = \frac{z_0 - C_6}{k_6}$$
(26)

2条空间直线分别代表 u_0 和 v 在空间实际位置的点的集合,这两条直线上的点有一一对应关系。 式中, k_1 、 k_2 、 k_3 、 k_4 、 k_5 、 k_6 、 C_1 、 C_2 、 C_3 、 C_4 、 C_5 、 C_6 均为 常数。这两条直线在本文中称为解直线。在解直线 上任取一点即可确定 4C 机构的 1 个 CC 杆组。

RC 杆组在通过 4 个位置时只有转动,没有滑动 位移。相比于 CC 杆组多一个限制条件,即 $s_j - s_0 =$ 0(图 1)。因此导致在推导方程的过程中增加了一 组约束方程

 $\|P_{1j} - P_1\| = 0$ (*j*=1,2,3) (27) 式中 P_{1j} 、 P_1 是图 1 中直线 L_1 与其公垂线的交点。 对于 CC 杆组的四位置问题(*n*=3)由本节前段可 知,可列出 5 个方程,求解 6 个未知数。然而对于 RC 杆组多了一组限制方程(27),即可列出 8 个方 程,求解 6 个未知数,方程个数大于未知数个数,因 而无解。所以,对 RC 杆组只有在综合三位置问题 (*n*=2)时,才能有解,多于 3 个位置则无解。本文 通过做出 4C 机构的解域找到通过给定 4 个位置时 主动杆与机架间 C 副无滑动位移的点作为 R 副的 近似解,因此可以实现 RC 杆组的四位置综合。

2 空间 RCCC 机构综合过程及示例

2.1 空间 RCCC 机构的综合过程

对于四位置问题,空间 RCCC 机构综合应该分为:

(1)利用 4 个位置的姿态(即方位角、经度、纬 度)综合出球面 Burmester 曲线,并建立基于球面 Burmester 曲线的解域,称之为解域1,在解域1上选 取一点作为机构运动副轴线方向矢量的解(图2中 z_0, z_1, z_2, z_3 4 个方向矢量)。

(2)在上述4个方向矢量已经选定的基础上, 结合式(23)求解出两组解直线方程。在4个方向 矢量中,2个矢量就可以得到式(25)、(26)的一组 空间直线,因此4个矢量可以得到两组类似的解直 线。将两组直线方程分别作为横、纵坐标就可以建 立解域,本文称之为解域2。在解域2上任选一点 就可以确定1个符合条件的4C机构(解域建立过 程见示例1)。

图 2 中 z_0 、 z_1 、 z_2 、 z_3 代表运动副轴线的方向。 x_0 、 x_1 、 x_2 、 x_3 代表相邻 2 个 z 轴公垂线的方向。 α_{01} 、 α_{12} 、 α_{23} 、 α_{30} 为相邻 2 个 z 轴间的夹角。 θ_0 、 θ_1 、 θ_2 、 θ_3 为相邻 2 个 x 轴间的夹角。 h_1 、 h_2 、 h_3 、 h_4 为相邻 2 个 z 轴间公垂线长度。 s_0 、 s_1 、 s_2 、 s_3 为相邻 2 个 x 轴 间公垂线长度。A、A'、B、B'、C、C'、D、D'为相邻 2 个 z 轴间公垂线的交点。

图 2 空间 RCCC 机构示意图 Fig. 2 Schematic of spacial RCCC linkage

(3)将4C机构主动杆与机架间C副的滑动位 移作为判断条件放入解域2中,在解域2中找出4C 机构主动杆与机架间C副在通过四位置时滑动位 移 s_i - s₀ = 0的点作为空间 RCCC 机构的解。

2.2 综合示例

给出一组空间四位置参数(表1)。

表 1 空间四位置参数 Tab.1 Spatial four positions parameters

位置	$\delta_i/(\circ)$	$\alpha_i/(\circ)$	$\beta_i / (\circ)$	P i
1	15	90	0	(0,0,0)
2	20	40	45	(-23,8,13)
3	25	35	25	(-42,9,13)
4	30	40	5	(-55,-3,1)

表 1 中 δ_i 表示第 *i* 个位置的方位角, α_i 表示第 *i* 个位置的经度, β_i 表示第 *i* 个位置的纬度。 p_i 表示 第 *i* 个位置的空间坐标。

利用四位置的姿态角(即方位角、经度、纬度) 综合出球面 Burmester 曲线的过程在 1.2 节有过详 细的阐述,这里不再赘述。在圆点曲线上任取一个 值(设为 φ),则可得到圆心曲线上的一点,连接这 两点便可得到一个连架杆。球面四杆机构可以看做 是 2 个连架杆的组合,因此机构解可用一对圆点 (或圆心)上的点来表示。以参数 φ 作为机构解域 的横、纵坐标,设横坐标代表主动杆,纵坐标代表从 动杆,则平面每一点代表一个机构。参数 φ 步长取 为1,可以绘制出机构的类型解域图^[9]。在解域上

Fig. 3 Solution region based on spherical Burmester curve (solution region 1)

2.2.1 示例 1

选取解域1中的*m*₁点为方向矢量解(图3),其 值为

$$\begin{cases} \boldsymbol{u}_{0} = (-0.970, 0.206, 0.127) \\ \boldsymbol{v} = (-0.981, 0.193, 0.01) \\ \boldsymbol{u}_{0}^{*} = (-0.002, 0.032, 0.998) \\ \boldsymbol{v}^{*} = (0.417, 0.495, 0.762) \end{cases}$$
(28)

式(28)中矢量 u_0 、v 的方向分别与图 2 中 z_1 、 z_0 的方 向相同,矢量 u_0^* 、 v^* 的方向分别与图 2 中 z_2 、 z_3 的方 向相同。

将式(28)中的 u₀、v 代入式(23)得到形式如 式(25)、(26)所表示的一组直线方程(图4),将这一 组解直线作为解域 2 的横坐标 (或纵坐标)。将 u_0^* 、 **v**^{*}代入式(23)得到形式如式(25)、式(26)所表示的 另一组直线方程(图4),将这一组解直线作为解域2 的纵坐标(或横坐标)。图4中红色解直线 l₁表示向 量 u_0 通过的点的集合,即图2中B点的位置;蓝色解 直线 l_i 为向量 v 的通过的点的集合,即图 2 中 A'点的 位置。2条解直线上的每一点为4C机构主动杆在空 间的实际位置,两条解直线间的每1条连接线长度为 空间 4C 机构 C 副轴线方向矢量 z₀ 与 z₁ 之间公垂线 h_1 的长度(图 2)。图中紫色解直线 l_3 表示 u_0^* 通过 的点的集合,即图 2 中 D 点的位置;棕色解直线 l₄ 表 示向量 v^* 通过的点的集合,即图 2 中 C'点的位置。 两条解直线上的每一点为4C机构从动杆在空间的实 际位置,两条解直线间的每一条连接线长度为4C机 构 C 副轴线方向矢量 z2 与 z3 之间的公垂线 h3 的长 度。分别在两组解直线上任意取两点,便可以搭建符 合条件的空间 4C 机构。

将解直线 l₁、l₃的范围限制在 x 轴坐标[0,200] 这个范围内,将两条直线分别作为横、纵坐标轴建立 解域2(图5),解域2上任意一点对应着一个符合条 件4C 机构的解。

主动杆与机架间 C 副的滑动位移 $s_i - s_0$ 的数值

可表示成

$$s_j - s_0 = \| \boldsymbol{P}_{1j} - \boldsymbol{P}_1 \| (j = 1, 2, 3)$$
 (29)

式中 P_{1i} 与 P_1 如图1所示。

空间 4C 机构的自由度为 2,即 4C 机构通过 4 个位置需要给定两个驱动,即转动驱动与滑动驱动。 转动驱动这一部分与球面 4R 机构的情况相同,这 里仅分析一下滑动驱动 $s_j - s_0$ 。滑动驱动 $s_j - s_0$ 在 通过 4 个位置的时候方向是任意的。根据判断 4 个 位置 $s_j - s_0$ 的值可以确定机构走过 4 个位置滑动位 移的方向。对解域 2 上的每一点对应的空间 4C 机 构滑动位移 $s_j - s_0$ 的值进行计算,可得到分块解域 图(图 5)。

Fig. 5 Spatial 4C linkage solution region (solution region 2)

图 5 中,符号"+"表示下一位置相对于前一位 置沿 z_0 轴正向移动,"-"表示下一位置相对于前一 位置沿 z_0 轴负方向移动。图 5 中所标注的点表示 从第 1 位置到第 4 位置 $s_j - s_0$ 的数值为零,即没有 相对滑动位移,这个点所对应的机构解便是通过四 位置的 RCCC 机构的解。改点在图 4 中对应主动杆 解直线 l_1 上的点 P_1 与 l_2 上的点 P_2 ,从动杆解直线 l_3 上的点 P_3 与 l_4 上的点 P_4 。图 4 中标明了各运动 副矢量的方向,由此可清晰地看到解直线与运动副 方向矢量之间的关系。通过上述综合方法,得到近 似通过空间四位置的 RCCC 机构。根据所开发的空 间机构综合与分析软件进行仿真,得到仿真结果 (图 6)。

2.2.2 示例 2

选取解域 1 中 m₂ 点为方向矢量解(图 3), m₂ 点的值为

$$\begin{cases} \boldsymbol{u}_{0} = (0.933, 0.104, 0.058) \\ \boldsymbol{v} = (0.975, 0.165, 0.158) \\ \boldsymbol{u}_{0}^{*} = (0.295, 0.036, -0.955) \\ \boldsymbol{v}^{*} = (-0.145, 0.280, 0.949) \end{cases}$$
(30)

按照示例1中所述的方法建立解域2。本例在 解域1上选取不同于示例1所选的点作为方向矢量 解,将其代入式(23)中可得到不同的两组解直线, 从而建立不同于示例1的类型解域图(图7)。

图 7 中所标注的点为 RCCC 机构的解,选择该 点即可得到满足要求的另 1 个 RCCC 机构。仿真结 果如图 8 所示。综合出的 RCCC 机构能够通过给定 的 4 个位置。

通过示例2进一步说明本文所提出的分步综合

图 8 通过第 4 位置的 RCCC 机构 Fig. 8 RCCC linkage through the fourth position 方法是可行的、有效的。

3 结论

(1)研究结果表明,先确定角度,后确定位置的 分步综合法是可行、有效的。综合示例表明,解域综 合方法有效地解决了四位置空间 RCCC 机构的近似 综合问题。

(2) 在解域1上选取大部分没有缺陷的点都可 以在解域2上找到符合条件的 RCCC 机构。

(3)设计的 RCCC 机构综合软件能够很方便地 综合得到符合要求的机构,仿真结果证明本文给出 的方法及计算公式的正确性。

参考文献

- 孙建伟,褚金奎,卫静.利用数值图谱法进行 RCCC 机构的函数综合[J].中国机械工程,2008,19(6):713-717.
 SUN Jianwei, CHU Jinkui, WEI Jing. Research on RCCC mechanism function generation by using numerical atlas method[J]. China Mechanical Engineering,2008,19(6):713-717. (in Chinese)
- 2 褚金奎,孙建伟. 基于傅里叶级数理论的连杆机构轨迹综合方法[J]. 机械工程学报, 2010, 46(13): 31-41. CHU Jinkui, SUN Jianwei. Unified approach to synthesis of coupler curves of linkage by Fourier series[J]. Journal of Mechanical Engineering, 2010, 46(13): 31-41. (in Chinese)
- 3 RUTH D A, MCCARTHY J M. The design of spherical 4R linkages for four specified orientations [J]. Mechanism and Machine Theory, 1999, 34(7):677-692.
- 4 MCCARTHY J M, SOH G S. Geometric design of linkages [M]. Berlin: Springer Science & Business Media, 2010.
- 5 ANGELES J. Spatial kinematic chains: analysis-synthesis-optimization [M]. Berlin: Springer Science & Business Media, 2012.
- 6 BOTTEMA O, ROTH B. Theoretical kinematics [M]. Boston: Courier Corporation, 2011.
- 7 HAN J, QIAN W. On the solution of region-based planar four-bar motion generation [J]. Mechanism and Machine Theory, 2009, 44(2): 457-465.
- 8 杨通,韩建友,尹来容.基于解域的四精确点球面 4R 机构函数综合[J].农业机械学报,2012,43(10):200-206.

12

YANG Tong, HAN Jianyou, YIN Lairong. Spherical 4R function synthesis based on solution regions for four precision points [J]. Transactions of the Chinese Society for Agricultural Machinery, 2012,43(10):200 - 206. (in Chinese)

- 9 杨通,韩建友. 复合四位置刚体导引机构综合的研究[J]. 农业机械学报,2011,42(3):203-207,196.
- YANG Tong, HAN Jianyou. Rigid-body guidance mechanism synthesis through four mixed positions [J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(3):203 207, 196. (in Chinese)
- 10 尹来容,韩建友. 特殊情况下直线机构解域分析与综合方法[J]. 农业机械学报, 2011,42(4): 190-194. YIN Lairong, HAN Jianyou. Solution region analysis and synthesis method of straight line mechanism under special configuration
 - [J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(4):190-194. (in Chinese)
- 11 韩建友,崔光珍,杨通. 六杆机构四位置运动生成的解域综合理论与方法[J]. 北京航空航天大学学报,2014,40(9): 1170-1175.

HAN Jianyou, CUI Guangzhen, YANG Tong. The solution region synthesis theory and method of six-bar linkages with 4-position motion gemeration [J]. Journal of Beijing University of Aeronautics and Astronauics, 2014,40(9):1170-1175. (in Chinese) 尹来容,韩建友. 基于解域分析的直线机构综合方法研究[J]. 北京科技大学学报,2011,33(2):237-243.

- YIN Lairong, HAN Jianyou. Synthesis research of straight-line mechanisms by analyzing solution regions [J]. Journal of University of Science and Technology Beijing, 2011, 33(2):237 243. (in Chinese)
- 13 崔光珍,韩建友,杨通. 给定 4R 开链的八杆机构解域综合理论与方法[J]. 农业机械学报,2015,46(4):331-337.
 CUI Guangzhen, HAN Jianyou, YANG Tong. Solution region synthesis method of eight-bar linkages for 4R open chain[J].
 Transactions of the Chinese Society for Agricultural Machinery, 2015,46(4):331-337. (in Chinese)
- 14 杨通,韩建友,崔光珍,等. 给定两连杆运动面的 Watt-I 六杆机构空间解域综合方法[J]. 农业机械学报,2014,45(10): 307-312.

YANG Tong, HAN Jianyou, CUI Guangzhen, et al. Synthesis of Watt – I six-bar linkage based on spatial solution region for given two coupler planes[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10):307 – 312. (in Chinese)

- 15 CHIANG C H. Kinematics of spherical mechanisms [M]. Cambridge: Cambridge University Press, 1988.
- 16 LAROCHELLE P, MCCARTHY J M. Design of spatial 4C mechanisms for rigid body guidance [C] // Proceedings of the 1994 ASME Mechanisms Conference, 1994: 135 - 142.
- 17 MURRAY A, LAROCHELLE P. A classification scheme for planar 4R, spherical 4R, and spatial rccc linkages to facilitate computer animation [C] // ASME Paper No. DETC98/MECH 5887, 1998.
- 18 LAROCHELLE P, AGIUS A M. Interactive visualization of the coupler surfaces of the spatial 4C mechanism [J]. ASME Journal of Mechanical Design, 2005, 127(6): 1122 1128.
- 19 LAROCHELLE P. Circuit and branch rectification of the spatial 4C mechanism [C] // ASME Design Engineering Technical Conferences, 2000: 10-13.
- 20 BAI S, ANGELES J. A robust solution of the spatial Burmester problem [J]. ASME Journal of Mechanisms and Robotics, 2012, 4(3): 031003 - 031003 - 10.

(上接第387页)

- 18 YANG T L, LIU A X, SHEN H P, et al. On the correctness and strictness of the POC equation for topological structure design of robot mechanisms [J]. ASME Journal of Mechanisms and Robotics, 2013, 5(2):021009 - 021009 - 18.
- 19 YANG T L, SUN D J. A general DOF formula for parallel mechanisms and multi-loop spatial mechanisms [J]. ASME Journal of Mechanisms and Robotics, 2012, 4(1):011001-011001-17.
- 20 JIN Q, YANG T L. Theory for topology synthesis of parallel manipulators and its application to three-dimension-translation parallel manipulators [J]. ASME Journal Mechanical Design, 2004, 126(4): 625-639.
- 21 杨廷力. 机器人机构拓扑结构学[M]. 北京:机械工业出版社,2004.
- 22 杨挺力,刘安心,罗玉峰,等. 机器人机构拓扑结构设计[M]. 北京:科学出版社,2012.
- 23 李矇. 可重构混联机械手模块 TriViariant 的设计理论与方法[D]. 天津:天津大学,2005.
- 24 黄田,刘海涛,李曚. 五自由度机器人: CN1709657[P]. 2005-08-21.
- 25 沈惠平,尹洪波,李菊,等. 基于方位特征方法的范例并联机构的拓扑特征分析及其启示与应用[J]. 机械工程学报, 2015,51(13):101-115.

SHEN Huiping, YIN Hongbo, LI Jü, et al. Position and orientation characteristic based method and enlightenment for topology characteristic analysis of typical parallel mechanisms and its application [J]. Journal of Mechanical Engineering, 2015, 51(13): 101 - 115. (in Chinese)

26 KUO C H, DAI J S. Task-oriented structure synthesis of a class of parallel manipulators using motion constraint generator [J]. Mechanism and Machine Theory, 2013, 70(6): 394 - 406.