doi:10.6041/j.issn.1000-1298.2016.03.013

基于两段收获的弹齿式花生捡拾机构研究

许 涛¹ 沈永哲¹ 高连兴¹ 张旭东² 吕长义¹ 刘志侠¹ (1. 沈阳农业大学工程学院, 沈阳 110866; 2. 辽宁省农业机械化研究所, 沈阳 110866)

摘要:为解决花生两段式机械收获过程中因花生捡拾装置存在植株"壅堆"与"抛起"而造成掉果损失的问题,结合相应的花生收获农艺和植株物理机械特性,针对滑道式弹齿滚筒式捡拾装置,根据弹齿在捡拾、举升、推送和空回4节拍中实现的理想摆动姿态和运动规律,以捡拾装置护板半径最小为主要目标,采用非支配排序遗传算法 NSGA-II进行了弹齿、曲柄、滑道和护板等多元件整体优化设计和机构参数优化,分析了弹齿、曲柄、护板等构件参数变化对目标函数的影响。根据4个工位中弹齿摆动特点,设计凸轮滑道中心线轨迹方程,运用 Matlab 编程获得滑道中心线轨迹,并采用非均匀三次 B 样条曲线对凸轮滑道轮廓线进行平滑处理。通过 ADAMS 动力学与运动学仿真,获得捡拾过程中齿端运动轨迹,通过分析确定了空回工位采用五次多项式过渡方式。根据设计结果制作弹齿滚筒式花生捡拾装置。通过样机运转试验、花生捡拾性能试验表明,新型弹齿式捡拾装置用于花生捡拾过程中,不存在植株"壅堆"与"抛起"问题;通过响应面分析法及试验,获得捡拾装置最优工作参数为:前进速度 V 为 48.0 m/min,转速 N 为 53.1 r/min,离地高度 H 为 – 7.4 mm。在花生植株含水率 15% ~ 17%的两段收获条件下,花生植株捡拾率为 98.9%,掉果损失率为 2.5%。

关键词:花生;两段收获;弹齿捡拾装置;参数优化 中图分类号:S225 文献标识码:A 文章编号:1000-1298(2016)03-0090-08

Spring-finger Peanut Pickup Mechanism Based on Two-stage Harvest

Xu Tao¹ Shen Yongzhe¹ Gao Lianxing¹ Zhang Xudong² Lü Changyi¹ Liu Zhixia¹ (1. College of Engineering, Shenyang Agricultural University, Shenyang 110866, China

 $2.\ Liaoning\ Institute\ of\ Agricultural\ Mechanization\ ,\ Shenyang\ 110866\ ,\ China\)$

Abstract: In order to reduce the loss of peanut caused by peanut plants stacking and throwing during two-stage peanut harvester working, a spring-finger cylinder pickup was designed by analyzing spring-finger swing and movement rule of a sliding spring-finger cylinder pickup in four processes of picking, lifting, pulling, and null swing with peanut harvest agronomic and plant physical and mechanical characteristics parameters, including spring-finger, crank, slide, shield, etc. which were optimized and designed optimally by NSGA – II for minimum shield radius. Equations of cam slide centerline locus were designed by using spring-finger swing characteristic. Cam slide centerline locus was obtained and smoothed by using Matlab and cubic non-uniform B-spline. The end displacement locus of the spring-finger swing simulation analysis. The quintic polynomial was used in null swing station with spring-finger swing simulation analysis. The experiments of prototype working and collecting peanut plants indicate that, the phenomenon of peanut plants stacking and throwing was disappeared; the optimal working parameters of spring-finger cylinder pickup were obtained by using response surface method; the forward speed was 48.0 m/min, cylinder rotating speed was 53.1 r/min, and height above around was -7.4 mm. The collecting rate and the loss rate were 98.9% and 2.5% respectively under peanut plant moisture content of 15% $\sim 17\%$ in two-stage harvest.

Key words: peanut; two-stage harvest; spring-finger pickup mechanism; parameters optimization

收稿日期:2015-11-05 修回日期:2015-12-30

基金项目:国家自然科学基金项目(51575367)和高等学校博士学科点专项科研基金项目(20122103110009)

作者简介:许涛(1980一),男,博士生,主要从事农产品收获与加工机械研究,E-mail: 1980xutao@163.com

通信作者:高连兴(1958—),男,教授,博士生导师,主要从事农产品收获与加工机械研究,E-mail: lianxing_gao@126.com

引言

花生是世界也是我国重要油料和经济作物之一^[1]。美国于20世纪50年代全面实现了两段式花 生机械收获且机械装备技术水平不断提高,处于世 界领先水平。我国在本世纪初开始花生联合收获机 研究,但因受植株性状、收获环境和种植方式等农艺 影响尚未大面积推广,目前仍以小型机械和人工分 段收获为主,花生收获机械化水平仅为23.3%^[2]。

近年来,新疆维吾尔自治区昌吉市引进了美国 KMC 的两段式花生收获机械;青岛农业大学研制出 带齿带式捡拾装置的背负式花生收获机^[3];农业部 南京农业机械化研究所研制出带有弹齿滚筒式捡拾 装置的花生收获机;一些小型农机企业也陆续开发 出带有滚齿筒式、搂齿齿带式和齿带式检拾装置的 小型花生捡拾收获机。然而,这些机械田间试验均 出现漏检率和掉果率高的问题,成为制约花生两段 机械收获的关键问题。基于农机农艺结合的原则综 合分析,发现根本原因在于:我国正在研制的各种类 型花生捡拾收获机,主要引用了适于稻麦与牧草的 弹齿式检拾装置或适于油菜的齿带式检拾装置,而 未深入研究适用于分段或两段收获的花生检拾装 置;而美国 KMC 花生捡拾收获机适用于起收后形成 连续条铺的本土匍匐型花生,难以适合我国起收后 放铺质量差的直立型花生,因而检拾收获过程中严 重存在植株"壅堆"与"抛起"问题,花生机械漏捡和 掉果损失十分严重。

捡拾装置是花生捡拾收获机的关键装置之一, 其不但影响花生收获效率和捡拾损失,也决定了整 机结构配置。比较各种类型捡拾装置,弹齿滚筒式 捡拾装置体积小,捡拾弹齿可相对于滚动的滚筒做 摆动运动,能够完成复杂的捡拾动作,具有更好的捡 拾性能和适应性,因此早已成功用于各种两段式谷 物、牧草等收获机。关于弹齿滚筒式捡拾装置设计 与参数优化,国内外专家进行了卓有成效的研 究^[4-6]。然而,前人关于弹齿滚筒式捡拾装置研究 仍存在一定的局限性:凸轮滑道中心线的优化处理、 弹齿机构各参数之间的关系等尚缺乏深入研究;更 多地针对谷物、牧草和秸秆等机械捡拾进行研究,而 针对晾晒于地表、无割茬支撑且难以形成连续条铺 的花生植株及其弹齿捡拾机构的研究尚未见文献报 道。针对上述问题,本文结合我国东北典型花生品 种、种植和两段收获农艺特点并基于仿生学原理,从 分析花生检拾元件的理想姿态与运动规律入手,研 究滑道式弹齿滚筒捡拾装置的核心机构即弹齿捡拾 机构,并进行机构参数的优化和样机的试验研究。

1 花生植株性状及对捡拾弹齿的要求

1.1 两种株型花生植株条铺性状分析

检拾收获时的花生植株性状分析是捡拾机构设 计的基础。我国主要种植直立型植株的花生,一般 分枝和侧枝总量8~14个,基本垂直于地面生长,荚 果主要集中在根部周围,花生植株整体重心高、地面 垂直投影面积小,起收后的花生植株不能保持荚果 朝上的直立状态(图1)。进行两段式机械收获时, 将花生植株放成有序的条铺,以便获得良好的晾晒 效果且有利于两段式花生收获。我国目前只有一种 小型夹持式花生起收机,可以实现花生植株荚果朝 向一侧的放铺,而多数花生起收机不能铺放成良好 有序的植株放铺,更不用说铺放成荚果朝上的"燕 尾"形条铺。不同于一般谷物和牧草,由于直立型 花生植株性状、荚果朝向一侧且平躺于地面、晾晒后 植株含水率下降而性状均齐等,使花生条铺植株之 间连接力小、条铺连结性差,对花生捡拾装置提出更 高要求^[7-8]。

图 1 我国直立型花生植株与起收后的条铺 Fig. 1 Chinese peanut plants and peanut swath dug

美国的匍匐型花生基本匍匐于地面生长,植株 分枝与侧枝多而茂密、地面投影面积大,花生荚果沿 主根分布半径大,花生植株整体重心低,起收时容易 翻转成荚果朝上状态并且保持稳定(图2),花生条 铺蓬松且荚果离开地面一定高度,通风透光晾晒效 果好。同时,花生植株间秸秆相互交叉,条铺连续性 好,十分有利于机械捡拾,以致花生收获机弹齿机构 可从弹齿相对滚筒摆动简化为弹齿与滚筒间无相对 运动的整体简化式弹齿滚筒捡拾装置,从而使捡拾 装置结构得到简化。

图 2 美国匍匐型花生植株与起收后的条铺 Fig. 2 American peanut plants and peanut swath dug

1.2 直立型花生捡拾对弹齿的要求

对于两段式花生收获而言,晾晒于地表的直立 型花生与麦稻、油菜和牧草等作物远不相同:花生属 于矮秆作物,茎秆短且植株成束状,晾晒后具有一定 脆性,特别是荚果朝向一侧的植株放铺连结力小、连 续性较差,影响植株条铺连续顺利捡拾;起收时花生 根部和荚果整体挖出,与裸露的地表直接接触进行 晾晒;由于没有割茬支撑,捡拾收获时弹齿须划入地 表一定深度,因而弹齿容易打土;花生捡拾收获时需 同时兼顾摘果作业的要求,植株含水率一般较低,捡 拾时容易掉落荚果造成荚果损失^[9]。

通过对两段式收获的花生植株性状分析,为使 弹齿捡拾花生植株时不漏捡、不壅堆和不掉果,则应 使捡拾弹齿满足以下条件:

(1)当弹齿在捡拾之初接触地面时,弹齿与地面之间应该保持一定的倾角,类似于人使用叉子叉起花生植株。

(2)弹齿与花生植株接触的相对速度适当,以 免产生较大冲击抛起植株,使荚果掉落。

(3)弹齿将花生植株升起、通过护板向输送装 置运送过程中,保证弹齿的推送作用。

(4)弹齿退出护板过程中,与护板的夹角应不 小于金属表面对花生植株相互作用的钳制角,以免 对花生植株形成钳制作用,影响植株输送,损伤植株 和荚果,造成掉果。

(5)花生捡拾过程中,弹齿入土不能过深、不打 土。

2 弹齿捡拾相位及其姿态的确定

如图 3 所示, 捡拾弹齿与曲柄固联成刚体, 固连 处与滚筒盘铰接, 曲柄端部的滚轮在固定的凸轮滑 道内滚动, 凸轮盘的滑道形状直接控制弹齿摆动规 律。弹齿滚筒式捡拾机构中的弹齿是复杂的复合运 动元件, 其随收获机组前进、滚筒转动的同时, 自身 还相对于滚筒有规律的反复摆动。根据直立型花生 捡拾对弹齿的运动要求, 花生捡拾过程中, 弹齿随滚 筒转动到不同位置时, 须保持相应的姿态。弹齿运 动过程中的姿态变化所对应的滚筒转动位置关系定 义为弹齿捡拾相位, 用滚筒转角表示。捡拾滚筒转 动一周, 每个捡拾弹齿均连续地完成"捡拾"、"举 升"、"推送"和"空回"4 个工位的一个捡拾循环 (图 4)^[10]。

(1)捡拾工位(捡拾弹齿相位角β₁):模仿人用 叉子捡拾花生植株的情形,弹齿捡拾初始时,捡拾弹 齿保持一定前倾插入地面浅表与植株之间,然后弹 齿逐渐趋于水平,在捡拾滚筒转动和机组水平前进

图 3 弹齿滚筒式捡拾装置结构简图

Fig. 3 Structure of spring-finger cylinder picker
1. 捡拾弹齿 2. 中心轴 3. 曲柄 4. 管轴 5. 凸轮滑道 6. 滚
轮 7. 护板 8. 后侧板

Fig. 4 Spring-finger phases diagram of spring-finger cylinder pickup mechanism

的合成速度作用下,捡拾弹齿端部速度开始逐渐向 上,以便将花生植株挑起。

(2)举升工位(捡拾弹齿相位角β₂):举升工位 初始,捡拾弹齿与滚筒径向方向一致并处于水平状态;随着滚筒的转动,齿端线速度由垂直向上变为后 上方,以便将花生植株升起并送至护板上方。

(3)推送工位(捡拾弹齿相位角β₃):推送工位 初始,捡拾弹齿基本处于铅垂状态,相对速度方向呈 水平向后,将花生植株向后做推送运动;在推送工位 后期,捡拾弹齿逐渐相对于滚筒径向有较大的后倾, 以免捡拾弹齿相对护板形成钳止角,不利于花生植 株沿护板向后运动并避免堵塞于护罩的缝隙之中。

(4)空回工位(捡拾弹齿相位角 β₄):随滚筒的 不停转动,做相对运动的捡拾弹齿在完成捡拾、升运 和推送工位后,回到捡拾工位初始位置,为进行下一 个捡拾循环做准备。此间捡拾弹齿虽然不接触花生 植株与地面,但其相对于滚筒的摆动角加速度较大, 以便尽快在下一个捡拾工位开始时保持原来的捡拾 位置。

结合当前典型弹齿滚筒捡拾机构特点及弹齿在 捡拾过程中在各个阶段摆动规律,根据捡拾弹齿姿 态的几何分析,综合考虑弹齿相对运动和绝对运动 方向,以及每个捡拾工位弹齿摆动初始姿态与位置, 选取弹齿初始角和各工位角: $\beta_0 = 5^\circ$, $\beta_1 = 90^\circ$, $\beta_2 = 95^\circ$, $\beta_3 = 105^\circ$, $\beta_4 = 65^\circ$ 。

3 凸轮滑道中心线轨迹设计与优化

从弹齿捡拾机构构成与原理可知,捡拾弹齿连 续实现"捡拾"、"举升"、"推送"和"空回"4个相位 的运动姿态和规律,均由凸轮滑道直接控制。因此, 需要结合机构杆件参数设计凸轮滑道中心线轨迹。

基于盛凯等^[11]"反转后的摆动从动件盘形凸轮 机构"原理,根据捡拾弹齿在每个工位的摆动规律 以及弹齿捡拾相位,应用多项式运动规律与三角函 数运动规律进行凸轮运行轨迹即滑道中心线的设 计。捡拾弹齿实现"捡拾"、"举升"、"推送"和"空 回"4 个相位的连续运动且保证理想的姿态,凸轮滑 道中心线是由4 部分弧线构成的闭合曲线(图5)。

图 5 弹齿捡拾机构凸轮滑道中心线分析简图 Fig. 5 Cam slide centerline analysis diagram of spring-finger cylinder picker mechanism

(1) 捡拾工位凸轮滑道中心线 \widehat{AC} :由 \widehat{AB} 与 \widehat{BC} 两段圆弧组成,其中,A 点为捡拾工位起始点,C 点 为捡拾工位结束点; \widehat{AB} 段为捡拾初始段即搂拾段, \widehat{BC} 段为捡拾段。

在捡拾初始段 \widehat{AB} 区间,弹齿与滚筒无相对摆动,以便增大弹齿搂拾机会。 \widehat{AB} 为以 O_1 为圆心、 R_1 为半径的圆弧,滚轮在 \widehat{AB} 内滑动,捡拾弹齿与径向 夹角 θ 保持不变。在捡拾段 \widehat{BC} 区间,弹齿随滚筒 转动的同时相对回摆,捡拾工位结束时使 $\theta=0,\widehat{BC}$ 可采用五次多项式运动规律进行过渡,使捡拾弹齿 平缓回摆,以便减少弹齿对花生植株的打击,增大捡 拾区域。同时,减轻滚轮对凸轮滑道的冲击力。

(2)举升工位凸轮滑道中心线段 \widehat{CD} :捡拾弹齿 在 \widehat{CD} 平稳上升、与滚筒之间无相对摆动。因此 \widehat{CD} 是以 O₁为圆心、R₂为半径的圆弧。滚轮运动到 D 点 举升运动结束,捡拾弹齿与上护板基本垂直。

(3) 推送工位凸轮滑道中心线段 DF:由 DE 和 EF 直线段组成。推送初始位置 D 点由推送初始角 B(B)为弹齿径向与Y轴夹角)决定,为避免推送过程 中对花生植株钳制作用,弹齿与上护板夹角ψ应始 终大于金属表面对花生植株相互作用的钳制角。推 送过程中,捡拾弹齿向后推送的同时,沿护板垂直方 向向下运动,以便尽快缩回。以O,为圆心、R,为半 径、点 D 为起始点做圆弧,为了避免在空行工位中 心线过渡圆弧 IA 曲率过大,在 X_1Y_1 坐标系下,取 X_1 坐标轴反向延长线与圆弧交于 E 点,做直线 EG 相 切于 \widehat{DE} 并垂直 X 轴于 G 点。滚轮沿 EG 段向下滑 动时, 捡拾弹齿与上护板夹角逐渐变小直至捡拾弹 齿完全收缩进上护板内。此时滚轮所处位置为 F 点,推送工位结束,捡拾弹齿与上护板的夹角 α 应 大于金属表面对花生植株相互作用的钳制角,避免 在推送工位结束时发生夹持现象。

(4) 空行工位的凸轮滑道中心线段:可根据动 力学仿真结果,采用以下两种过渡方式:空行工位凸 轮滑道中心线 FA 由线段 FI 与 IA 两段组成,直线 FI 为 EF 延长线, IA 为以 O₃圆心、R₄为半径的圆弧,与 直线 FI 相切于 I 点,相交于捡拾弹齿捡拾初始位置 曲柄端点 A;采用正弦加速度或五次多项式过渡方 式。

根据以上设计方法, \widehat{BC} 采用五次多项式运动规 律,线段 EF 相切于 \widehat{DE} 与 \widehat{IA} ,因此仅需对 \widehat{CD} 与 \widehat{DE} 交点 D、 \widehat{IA} 与 \widehat{AB} 交点 A 进行平滑过渡处理。可采 用非均匀三次 B 样条曲线对尖点 D 和 A 附近的轮 廓线进行优化处理,使相邻两段曲线可以圆滑过渡, 减少滚轮在中心线尖点处对凸轮滑道的冲击。

4 弹齿捡拾机构参数设计与优化

设定花生植株条铺厚度 110~130 mm,捡拾弹齿末端深入地面 0~10 mm,确定捡拾弹齿伸出长度 130 mm。

4.1 设计变量

根据花生植株捡拾特性,选取曲柄长度 L_s 、曲柄夹角 φ 、滚筒半径 r、上护板倾角 γ 、捡拾弹齿长度 L、捡拾初始倾角 θ 作为优化变量,有

$$x = (L_s, \varphi, r, \gamma, L, \theta) \tag{1}$$

4.2 目标函数

如图6所示,在空行工位,由于捡拾弹齿摆动角

4.3

加速度最大,所以在放齿过程中滚轮对滑道的冲击 也最大,滑道磨损严重。把空行段滚轮对滑道的冲 击达到最小作为优化的目标函数之一。G点为 EF延长线与 X 轴交点, O_1G 距离越大,凸轮 \widehat{FA} 段推程 行程 h 越小,捡拾弹齿摆动角加速度越小,由此建立 目标函数 $f_1(x)$ 。

推送工位开始时,捡拾弹齿径向与 Y 轴呈 β,因 此根据解析法已知 D 点坐标方程为

$$\begin{cases} x_{D} = r \sin\beta - L_{s} \cos\left(\frac{\pi}{2} + \beta - \varphi\right) \\ y_{D} = r \cos\beta + L_{s} \sin\left(\frac{\pi}{2} + \beta - \varphi\right) \end{cases}$$
(2)

以此类推,在 \widehat{DE} 范围内滚筒顺时针旋转 δ_1 与 δ_2 ,分别取两点D'、D'',并可推得其坐标方程。 \widehat{DE} 圆心 O_2 坐标方程为

$$\begin{cases} x_{o_2} = V - (U - V) k_2 / (k_1 - k_2) \\ y_{o_2} = (U - V) / (k_1 - k_2) \end{cases}$$
(3)

$$\ddagger \Psi \quad U = (x_D^2 - x_{D'}^2 + y_D^2 - y_{D'}^2) / (2x_D - 2x_{D'}) \\ V = (x_D^2 - x_{D''}^2 + y_D^2 - y_{D''}^2) / (2x_D - 2x_{D''}) \\ k_1 = (y_D - y_{D''}) / (x_D - x_{D'}) \\ k_2 = (y_D - y_{D''}) / (x_D - x_{D''}) \end{cases}$$
(3)

$$\min f_1(x) = \frac{1}{l_{o_1 c}}$$
(5)

花生捡拾作业时,捡拾弹齿末端线速度对花生 植株打击和产生的离心力有直接影响。因此,在滚 筒回转速度不变,弹齿齿端半径越小其齿端线速度 也越小,同时漏检率也会越低。另外,弹齿齿端半径 越小,捡拾器护板半径也可减小,从而可降低弹齿对 花生植株捡拾高度。捡拾弹齿捡拾长度 L₁不变,护 板半径 R 越小,齿端半径也越小。因此,如图 6 所 示建立目标函数

$$\min f_2(x) = R = \sqrt{(L - L_1)^2 + r^2 - 2(L - L_1)r\cos(\pi - \theta)} \quad (6)$$
约束条件

(1)如图 6 所示,曲柄长度 L_s 、捡拾倾角 θ 、捡拾 弹齿捡拾与曲柄夹角 φ 变化会引起目标函数 $f_1(x)$ 变化,为使凸轮滑道中心线 I 点到 A 点有平缓的圆 弧过渡,同时满足 \widehat{IA} 与 EI 相切且与 \widehat{AB} 相交,引入 约束条件:在空行工位过渡曲线,凸轮中心线 A 点 处横坐标应小于 $R_4(I$ 点横坐标值,即 $A_x < I_x$),应存 在约束条件

$$L_s \sin(\varphi - \theta) - R_4 < 0 \tag{7}$$
$$R_4 = l_{0,G}$$

其中

(2)凸轮滑道固定安装在捡拾装置左侧侧板 内,轴向与护板不存在干涉,但捡拾过程中捡拾齿端 需入土 10 mm,避免左侧板与地面刮碰,因此可通过 限定凸轮滑道中心线最低点处与护板平面径向位置 关系来限制左侧板与地面高度,即凸轮滑道中心线 最低点 *B* 与护板最低点 *N*(点 *N* 为护板与 *Y* 轴负方 向交点)距离小于 30 mm。如图 6 所示,引入约束条 件

$$R - R_1 - 30 < 0 \tag{8}$$

其中 $R_1 = \sqrt{L_s^2 + r^2 - 2L_s r(\pi - \varphi + \theta)}$

(3) 在推送工位时捡拾弹齿对花生植株产生夹 持现象,引入约束条件

$$\alpha_{\min} < \alpha$$
 (9)

式中 α——推送工位结束时捡拾弹齿与上护板的 夹角

α_{min}——捡拾弹齿对花生植株的钳制角,取
 1.35/rad

捡拾弹齿与曲柄铰接点处于滚筒盘上的位置 J 点,曲柄端点处于凸轮滑道中心线 F 点,捡拾弹齿 端点与上护板交于 M 点,K 点为上护板反向延长线 与 Y 轴的交点。

$$\angle FJO_1 = \arccos \frac{l_{FJ}^2 + l_{O_1J}^2 - l_{O_1F}^2}{2l_{FJ}l_{O_1J}}$$
 (10)

$$\angle FO_1 J = \arccos \frac{l_{o_1F}^2 + l_{o_1J}^2 - l_{FJ}^2}{2l_{o_1F}l_{o_1J}}$$
(11)

$$\angle FO_1 G = \arccos \frac{l_{o_1 G}}{l_{o_1 F}} \tag{12}$$

$$\angle MKO_1 = \frac{\pi}{2} - \gamma \tag{13}$$

$$\alpha = 2\pi - \angle MKO_1 - \left(\frac{\pi}{2} + \angle FO_1J - \angle FO_1G\right) - (\angle FIM + \angle FIO_1\right)$$
(14)

式中 L_s——曲柄长度,取50~70 mm

- φ——捡拾弹齿与曲柄夹角,取1.0~1.57 rad
 γ——上护板倾角,取0.1~0.5 rad
 r——滚筒半径,取70~120 mm
 L——捡拾弹齿长度,取100~250 mm
 θ——捡拾倾角,取0.349~0.532 rad
 L₁——捡拾弹齿捡拾长度,取130 mm
 β——推送初始角,取-0.091~0.309 rad
- R----护板半径,mm

4.4 优化方法与结果分析

该问题属于多目标函数优化,采用 C 语言编制 的非支配排序遗传算法 NSGA - II 进行多目标优 化,以实现:尽可能收敛到真正的 Pareto 边界;找到 的解要具有多样性和均匀性,尽可能覆盖整个边界。 多目标优化不存在唯一全局最优解,而存在多个最 优解集合。最优解集合的每组解相对于目标函数而 言相互间是不可比较的,一般称为 Pareto 最优解集。 初始种群取 100,进化代数取 700 代,交叉因子 0.8, 交叉分布指数 20,变异分布指数 20^[12]。

经 NSGA – II 遗传算法迭代得到可行多目标 Pareto 最优解 100 组参数,选取 20 组解集(表1)。 经 700 代进化后,解集内曲柄长度 L_x 、曲柄夹角 φ 、 捡拾弹齿长度 L、捡拾倾角 θ 变化不大,对目标函数 影响较小。上护板倾角 γ 、滚筒半径 r 对护板半径 影响较大,近似正比关系。目标函数 $f_1(x) 与 f_2(x)$ 关系如图 7 所示,两者近似反比关系。给予目标 函数护板半径 $f_2(x)$ 和上护板倾角 γ 较大权重,选 取解集中第 13 组解圆整后得机构参数如表 2 所 示。

表 1 多目标优化解集 Tab.1 Multiobjective optimization set

				ũ	-			
序号	曲柄长度	捡拾弹齿与曲	上护板倾角	滚筒半径	捡拾弹齿长度	捡拾倾角	$f_1(x)$	$f_2(x)/\mathrm{mm}$
	L_s/mm	柄夹角 φ/rad	γ∕rad	r∕ mm	<i>L</i> /mm	θ /rad		
1	50.026 417	1.000 056	0. 499 886	119. 999 977	202. 884 796	0.349009	0.011 200	192. 884 800
2	50.000 340	1.000 148	0.477411	118. 248 344	203. 248 703	0.349012	0.011 600	191. 497 000
3	50.000 538	1.006 340	0. 499 938	117. 519 333	203. 198 166	0.349 001	0.011 700	190.717 500
4	50.009 014	1.005 149	0.486 577	116. 966 324	202. 888 443	0.349 007	0.011 800	189.854800
5	50.000 698	1.000 267	0.454274	114. 437 607	203. 275 345	0.349 000	0.012 300	187.713 000
6	50.000 961	1.005 384	0.454 084	114. 291 283	202. 703 659	0.349 000	0.012 300	186. 994 900
7	50.000 488	1.004 642	0.430 627	111. 176 224	202. 846 085	0.349 002	0.013 000	184.022 300
8	50.000 141	1.000 043	0.415 396	109. 535 667	202. 888 901	0.349 003	0.013 400	182. 424 600
9	50.009 220	1.014 384	0.400674	106. 521 561	203. 177 750	0.349 000	0.014 200	179.699300
10	50.000 011	1.010489	0.360241	104. 377 769	202. 945 953	0.349 002	0.014 800	177. 323 700
11	50.000 042	1.000758	0.349304	102.003 212	203.054 199	0.349 000	0.015 400	175.057 400
12	50.000 278	1.012 740	0.312512	100. 997 841	202. 941 772	0.349 002	0.015 900	173.939 600
13	50.000 404	1.000131	0.298 604	99. 221 840	203.050400	0.349 000	0.016 300	172. 272 200
14	50.001 945	1.006 566	0.279182	98.697517	202. 954 239	0.349009	0.016 800	171.651700
15	50.000099	1.014 638	0.248262	96. 597 450	202. 896 042	0.349 000	0.017 700	169.493 500
16	50.007 442	1.010 547	0. 221 479	93.860603	203. 198 181	0.349 002	0.018 900	167.058 800
17	50.001 152	1.000 148	0.157676	91.972 839	203. 247 589	0.349 002	0.020000	165. 220 400
18	50.000 443	1.000 019	0.137081	89.091 385	203. 498 993	0.349004	0.021700	162. 590 400
19	50.027 893	1.014 630	0.108 599	88. 530 441	203. 039 215	0.349 000	0.022 500	161. 569 700
20	50.000 523	1.000 037	0.110 892	87.492638	203. 497 742	0.349002	0.023 000	160. 990 400

表 2 弹齿滚筒捡拾机构参数

Tab. 2	Parameters	of	spring-finge	er cylind	er picke
--------	------------	----	--------------	-----------	----------

参数	数值
曲柄长度 L _s /mm	50.0
捡拾弹齿与曲柄夹角 φ/rad	1.0
上护板倾角 γ/rad	0.3
滚筒半径 r/mm	99. 2
捡拾弹齿长度 L/mm	203.0
捡拾倾角 θ/rad	0.3

捡拾滚筒转动一周,对比捡拾、举升、推送3个 工位,空回工位对捡拾弹齿的摆动规律无严格要求, 因此,空回工位凸轮滑道中心线轨迹可采用多种过 渡方式,其中典型的有五次多项式过渡方式与直 线 + 圆弧过渡方式。在 Matlab 环境下,根据表 2 弹 齿捡拾机构参数与凸轮滑道各段中心线轨迹方程, 建立凸轮滑道中心线模型,如图 8 所示。

在 ADAMS 环境下,建立捡拾机构模型进行仿 真分析(图9)。为减少仿真约束条件和方便观察捡 拾弹齿的运动状态,仅建立部分零部件的模型^[9]。

图 9 弹齿滚筒捡拾机构 ADAMS 模型 Fig. 9 ADAMS model of spring-finger cylinder picker

给定捡拾机构初始转速 50 r/min、前进速度 45 m/min时,采用五次多项式过渡方式与直线 + 圆 弧过渡方式的凸轮滑道中心线空行段动力学仿真分 析结果如图 10 所示。

可以看出,弹齿摆角两者没有变化,前者弹齿摆 动角速度与角加速度在 0.15 s 达最大值(ω = 38 rad/s,a = 2 250 rad/s²)。后者在 0.18 s 达到峰值 (ω = 58 rad/s,a = 21 100 rad/s²)。对比可知,凸轮 滑道中心线空行段采用五次多项式过渡方式较为合 理。

5 弹齿式捡拾机构性能试验

根据上述理论分析和优化设计结果,加工出凸 轮滑道物理样机(图 11)和弹齿滚筒捡拾装置样机 (图 12)。

为了检验优化后的弹齿滚筒式花生捡拾装置的 样机性能,在沈阳农业大学工程学院土槽实验室进 行了初步试验。试验材料为选自沈阳农业大学花生 研究所的辽宁省主栽花生品种花育 30,秸秆含水率

图 11 凸轮滑道 Fig. 11 Cam slide

图 12 弹齿滚筒式捡拾装置 Fig. 12 Spring-finger cylinder picker 1. 右侧板 2. 左侧板 3. 护板 4. 捡拾弹齿

15%~17%,荚果朝向一侧的2 垄合1条铺,每次试验的花生铺长20m。主要试验装置如图13 所示, 土槽车前进速度调整范围10~100 m/min。捡拾装置由1.1 kW电动机提供动力并通过1.3 kW变频器进行转速调节。其他试验仪器和工具有 RM-722型激光转速表、电子秒表、米尺、天平等。

参照相关标准^[13],确定捡拾率和损失率为主要 试验指标。根据响应面分析法(RSM)和 Box -Behnken Design(BBD)中心组合试验设计原理^[14],

图 13 弹齿滚筒式捡拾试验装置 Fig. 13 Test device of spring-finger cylinder picker 1. 土槽车 2. 机架 3. 捡拾器 4. 电动机与减速器 5. 花生植株

选取机组速度 V、弹齿滚筒转速 N 和弹齿末端距地 面高度 H 为试验因素,进行了 3 因素 3 水平(表 3) 试验设计,共 17 组、每组重复 3 次,试验方案与结果 见表 4, X_1 、 X_2 、 X_3 为因素编码值。

表 3 响应面试验因素与水平 Tab.3 Test factors and levels of response analysis

伯田	机组前进速度	滚筒转速	齿端距地面高度
细 11勺	$V/(\mathbf{m} \cdot \mathbf{min}^{-1})$	$N/(\mathbf{r} \cdot \min^{-1})$	<i>H</i> /mm
- 1	35	40	- 10
0	45	50	10
1	55	60	30

采用 Design – Expert 软件进行分析,求得最佳 捡拾率 98.9%、损失率 2.5% (优于国家行业标准的 98.5%和 5.0%)下的参数组合为:机组前进速度 V 为 48.0 m/min,弹齿滚筒转速 N 为 53.1 r/min,弹齿 末端距地面高度 H 为 – 7.4 mm。试验值与理论值 接近^[14-15]。

6 结论

(1)根据确定的弹齿捡拾相位和姿态,在初选 弹齿捡拾机构参数基础上,设计了凸轮滑道中心线 轨迹,采用C语言编制的非支配排序遗传算法

Tab. 4 Experimental plan and results 损失率/ X_{2} 序号 X_1 X_2 捡拾率/% % 1 - 1 - 1 0 98.5 2.5 2 1 - 1 0 97.8 2.8 3 - 1 0 98.6 2.9 1 4 1 0 98.3 1 3.5 5 - 1 0 - 1 98.8 2.3 0 6 1 - 1 98.6 2.5 7 - 1 0 1 96.7 4.3 8 1 0 1 95.9 4.6 9 0 - 1 - 1 98.8 2.3 10 0 1 - 1 99.3 2.7 11 0 - 1 1 96.8 3.9 12 0 1 1 96.5 4.9 13 0 0 0 98.4 2.6 14 0 0 0 98.3 2.5 0 0 15 0 98.5 2.6 16 0 0 0 98.6 2.7 17 0 0 0 98.3 2.8

表4 试验方案与结果

NSGA-II进行了多目标优化,分析了护板、曲柄、滚筒等构件参数变化对凸轮滑道中心线轨迹变化的影响。

(2)在 Matlab 环境下,根据优化后的弹齿捡拾 机构参数与凸轮滑道各段中心线轨迹方程,编制程 序计算出凸轮曲线轮廓坐标点,建立凸轮滑道中心 线模型,通过 ADAMS 动力学仿真结果分析,确定五 次多项式作为空回工位过渡方式。

(3)根据优化结果设计出样机并进行了土槽试验。通过多指标响应面综合试验分析,得出捡拾装置最优工作参数:前进速度 V为48.0 m/min,转速 N为53.1 r/min,离地高度 H为-7.4 mm,此参数组合下捡拾率 98.9%,损失率 2.5%,略优于行业标准NY/T 2204—2012 的规定值。

参考文献

- 尚书旗,刘曙光,王方艳,等.花生生产机械的研究现状与进展分析[J].农业机械学报,2005,36(3):143-147.
 SHANG Shuqi, LIU Shuguang, WANG Fangyan, et al. Currentsituation and development of peanut production machinery[J]. Transactions of the Chinese Society for Agricultural Machinery,2005,36(3):143-147. (in Chinese)
- 2 孙庆卫,王延耀,徐志瑞.花生分段收获机的应用现状及进展分析[J].农机化研究,2012,34(1):224-227. SUN Qingwei, WANG Yanyao, XU Zhirui. The application situation and progress analysis of peanuts piecewise harvest machine [J]. Journal of Agricultural Mechanization Research,2012,34(1): 224-227. (in Chinese)
- 3 王东伟,尚书旗,韩坤.4HJL-2型花生捡拾摘果联合收获机的设计与试验[J].农业工程学报,2013,29(11):27-36. WANG Dongwei, SHANG Shuqi, HAN Kun. Design and test of 4HJL-2 harvester for peanut picking-up and fruit-picking[J]. Transactions of the CSAE,2013,29(11):27-36. (in Chinese)
- 4 袁彩云,刁培松,张道林.弹齿滚筒捡拾器的设计与运动仿真[J]. 农机化研究,2011,33(5):73-76. YUAN Caiyun, DIAO Peisong, ZHANG Daolin. Design and motion simulation of spring-finger cylinder pickups[J]. Journal of Agricultural Mechanization Research,2011,33(5):73-76. (in Chinese)
- 5 王国权,余群,卜云龙,等. 秸秆捡拾打捆机设计及捡拾器的动力学仿真[J]. 农业机械学报,2001,32(5):59-61. WANG Guoquan, YU Qun, BU Yunlong, et al. Design of pickup baler and dynamic simulation of pick roller[J]. Transactions of the Chinese Society for Agricultural Machinery,2001,32(5):59-61. (in Chinese)

Chinese Society for Agricultural Machinery, 2013, 44(6):45-49. (in Chinese)

- 13 周勇,余水生,夏俊芳.水田高茬秸秆还田耕整机设计与试验[J].农业机械学报,2012,43(8):46-50.
- ZHOU Yong, YU Shuisheng, XIA Junfang. Design and experiment of cultivator for high straw returning in paddy field [J].Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(8):46 50. (in Chinese)
- 14 孟海波,韩鲁佳,刘向阳. 秸秆揉切机用刀片断裂失效分析[J]. 农业机械学报,2004,35(4):51-54.
 MENG Haibo, HAN Lujia, LIU Xiangyang. Study on fracture failure of cutters used in a 9RZ 60 model rubbing and cutting machine[J]. Transactions of the Chinese Society for Agricultural Machinery,2004,35(4):51-54. (in Chinese)
- 15 乔晓东,王小燕,颜华,等. 基于虚拟仪器的后悬挂农具田间测试系统[J]. 农业机械学报,2013,44(10):100-103. QIAO Xiaodong, WANG Xiaoyan, YAN Hua, et al. Field test system of rear suspension tools based on virtual instrument[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(10):100-103. (in Chinese)
- 16 申屠留芳,邵鹏. 正反转旋耕灭茬机刀片的功耗分析[J]. 农机化研究,2007(11):87-89. SHENTU Liufang, SHAO Peng. Analyzing the energy consumption of the blade of rotary tillage and stubble cutting machine when turning forward direction or reversible[J]. Journal of Agricultural Mechanization Research,2007(11):87-89. (in Chinese)
- 17 韩光伟,貌建华,汤志军,等. 新型玉米秸秆切碎灭茬机功耗的试验[J]. 农机化研究,2007(3):131-133.
- HAN Guangwei, MAO Jianhua, TANG Zhijun, et al. Experimental on power consumption of a new chopper of corn straw and stubble [J]. Journal of Agricultural Mechanization Research, 2007(3):131-133. (in Chinese)
- 18 陈松涛,周学建,师清翔,等.小麦秸秆还田机粉碎装置性能影响因素试验与优化[J].农业机械学报,2007,38(9):67-70. CHEN Songtao,ZHOU Xuejian,SHI Qingxiang, et al. Experiment and optimization on factors affecting the performance of wheat stalk macerator smashing devices[J]. Transactions of the Chinese Society for Agricultural Machinery,2007,38(9):67-70. (in Chinese)
- 19 佟金,张智泓,陈东辉,等.凸齿镇压器与土壤相互作用的三维动态有限元分析[J].农业工程学报,2014,30(10):48-58. TONG Jin, ZHANG Zhihong, CHEN Donghui, et al. Three-dimensional dynamic finite element analysis of interaction between toothed wheel and soil[J]. Transactions of the CSAE,2014,30(10):48-58. (in Chinese)
- 20 王丽娟,石林榕,杨国军,等. 玉米秸秆切割过程的非线性数值模拟与仿真试验[J]. 干旱地区农业研究,2013,31(6):252-256. WANG Lijuan, SHI Linrong, YANG Guojun, et al. Nonlinear numerical simulation and simulation test on the cutting process of corn stalk[J]. Agricultural Research in the Arid Area,2013, 31(6):252-256. (in Chinese)

(上接第 97 页)

- 6 王文明,王春光.捡拾弹齿滚筒式捡拾装置参数分析与仿真[J].农业机械学报,2012,43(10):82-89. WANG Wenming, WANG Chunguang. Parameter analysis and simulation of spring-finger cylinder pickup collector [J]. Transactions of the Chinese Society for Agricultural Machinery,2012,43(10):82-89. (in Chinese)
- 7 关萌, 沈永哲, 高连兴, 等. 花生起挖晾晒后的果柄机械特性[J]. 农业工程学报, 2014, 30(2): 87-93.
- GUAN Meng, SHEN Yongzhe, GAO Lianxing, et al. Mechanical properties of peanut peg after digging and drying [J]. Transactions of the CSAE,2014,30(2):87-93. (in Chinese)
- 8 GUAN Meng, ZHAO Baoquan, GAO Lianxing, et al. Effect of curing time on moisture content and mechanical properties of peanut pods[J]. International Agriculture Engineering Journal, 2015, 24(2):1-8.
- 9 高连兴,李献奇,关萌,等. 双吸气口振动式花生荚果清选装置设计与试验[J]. 农业机械学报,2015,46(3):110-117. GAO Lianxing, LI Xianqi, GUAN Meng, et al. Design and test on cleaning device of peanut pods with double air-suction inlets with vibration screen[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(3):110-117. (in Chinese)
- 10 于玉真,高连兴,李心平,等. 链齿式农田土壤捡石机栅条齿动力学分析[J]. 农机化研究,2007,29(5):49-51. YU Yuzhen, GAO Lianxing, LI Xinping, et al. Kinematics analysis on chain tooth rock picker in the farmland soil[J]. Journal of Agricultural Mechanization Research,2007,29(5):49-51. (in Chinese)
- 11 盛凯,曾南宏.弹齿滚筒捡拾器的机构特性及其运动数学模型[J].农业机械学报,1991,22(1):51-57.
 SHENG Kai, ZENG Nanhong. The mechanical feature and motional math model of spring-finger cylinder pick-ups [J].
 Transactions of the Chinese Society for Agricultural Machinery,1991,22(1):51-57. (in Chinese)
- 12 刘涛,苏成利,李平.基于外点惩罚函数与 NSGA Ⅱ 算法的气体分馏装置多目标优化[J]. 江南大学学报,2013,12(6):
 658 665.
 HUT CUCL L. LLD: Main Line in the state of a first state of a first state of a first state of a first state.
 - LIU Tao, SU Chengli, LI Ping. Multi-objective optimization of gas fractionation unit based on SUMT and NSGA II algorithm [J]. Journal of Jiangnan University, 2013, 12(6): 658-665. (in Chinese)
- 13 NY/T 2204—2012. 花生收获机械 质量评价作业规范[S]. 2012.
- 14 徐向宏,何明珠.试验设计与 Design-Expert、SPSS 应用[M].北京:科学出版社,2010.
- 15 关萌,陈中玉,高连兴,等.多功能组合式全喂入花生摘果试验装置研究[J].农业机械学报,2015,46(11):88-94.
 GUAN Meng, CHEN Zhongyu, GAO Lianxing, et al. Multifunctional modular full-feeding peanut picking testing device[J].
 Transactions of the Chinese Society for Agricultural Machinery,2015,46(11):88-94. (in Chinese)