Role of Macropores for Soil Compaction Restoring during Freeze-thaw Cycles
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The problem of soil compaction by agricultural machinery is almost unavoidable, so structural restoration of compacted soils is essential and the freeze-thaw cycle is an effective method for restoring compacted soil. In order to study the role of freeze-thaw cycle + macropore on the recovery of compacted soil, the indoor experiments were carried out to remodel the compacted soil and simulate the macropore by artificial pore measures, the number of freeze-thaw cycles was designed to be different under two soil water contents, the temperature fluctuation of the soil temperature was monitored by using temperature sensors, and at the same time, the changes of the pore and aggregate parameters of the compacted soil before and after the freeze-thaw cycle were compared. The results showed that during the freeze-thaw cycle, the temperature fluctuation of the compacted soil with artificial pores started at three and two cycles under the conditions of high and low water contents, respectively, while the temperature fluctuation of the compacted soil without artificial pores under the same water content conditions appeared at seven and four cycles, and the average scale of the aggregate and the structure coefficient of the compacted soil with artificial pores were all better than those of the compacted soil without artificial pores after freeze-thaw cycles. Artificial pores can change the intensity of freezethaw cycles in soil by adjusting the soil temperature fluctuation, and accelerate the process of structural recovery of compacted soil, i.e., the strategy of freeze-thaw cycles + macropores was an effective measure to improve the pore and aggregate structure of soil.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 10,2023
  • Revised:
  • Adopted:
  • Online: July 30,2023
  • Published:
Article QR Code