Abstract:Based on electrostatic separation technology, an electrostatic removal device for honeysuckle was designed to solve the problem of poor removal of woven bag filaments in the removal process. Through theoretical analysis, the critical conditions for the trajectory separation of honeysuckle and woven bag filaments in the electrostatic field were deduced, and the feasibility of electrostatic separation technology for honeysuckle impurity removal was verified. Single-factor experiments and COMSOL simulations were used to investigate the effects of electrostatic electrode shape, output voltage U of the high voltage electrostatic generator, electrostatic electrode angle α, the distance L between the electrode and the roller, and roller speed N on the removal performance. The electrode shape was determined as a circular arc, and the αwas set to be 45°. The quadratic regression equations for the removal rate and the false removal rate were established by the Box-Behnken experiment, respectively. Response surface analysis was used to explore the influence of each experiment factor on the experiment index. The optimum operating parameters of the device were determined to be U=11.9kV, N=28r/min, and L=60mm. The results of the bench experiment showed that the impurity and false removal rates were 94.47% and 0.89% respectively, which met the requirements for removing impurities from honeysuckle. The device proposed effectively removed woven bag filaments from honeysuckle and may provide a reference for the design of similar herb removal devices.