Water Use Characteristics and Profit Analysis of Spring Maize Production with Different Irrigation Methods in Hetao Irrigation District
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Located in the arid and semi-arid areas of Northwest China, the Hetao Irrigation District of Inner Mongolia is facing both shortage of surface water resources and severe soil salinization, therefore the high-efficient watersaving irrigation methods are the inevitable choice for sustainable agricultural production. A three-year field experiment was conducted to study the effects of different irrigation methods on yield, water productivity and net return of spring maize in the Hetao Irrigation District. Three irrigation methods, i.e., border irrigation (BI), furrow irrigation (FI) and drip irrigation (DI), were compared. Taking the recommended traditional BI water level as the control, three water levels imposed for FI were recommended, namely level (450mm, H), 0.8×recommended level (360mm, M) and 0.6×recommended level (270mm, L), respectively;while the three levels for DI were conducted based on different threshold values of soil water matric potential, i.e., -10kPa (H), -30kPa (M), and -50kPa (L), respectively. Totally seven treatments were implemented by randomized block design with three replicates. The results showed that the grain and straw yields were significantly affected by treatments. Under BI condition, totally average 10% of irrigation water was lost through deep percolation over the studied three years;whereas, under DI conditions, about 10.5~29.0mm water of groundwater was contributed into the root zone through capillary rise for crop water uptake. The response coefficient Ky of maize grain yield-soil water under DI (0.684) was smaller than that under FI (0.8215), indicating that the reduction of crop yield caused by decrease of crop water consumption was smaller under DI than that under FI. That meant DI helped maintain a higher crop yield under potential drought stress than FI. Compared with traditional BI, FI-H (450mm) could increase the grain yield and net return, FI-M (360mm) could save 31% of irrigation water while keeping the grain yield and net yield as same as the control. Compared with BI, DI-H and DI-M treatments could save irrigation water by 19% and 57% respectively, but increase grain yield by 21% and 15%, and increase net yield by 28% and 22%, respectively, resulting in a higher water use efficiency. Therefore, considering the external environmental conditions, including water diverted from the Yellow River, groundwater status and local farmers’ acceptance etc., water level with FI-M or DI-M could be used as an alternative to traditional BI for water-saving irrigation.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 31,2020
  • Revised:
  • Adopted:
  • Online: September 10,2020
  • Published:
Article QR Code