Differential Change Construction Based Geometric Error Compensation for Machine Tools
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In order to make error compensation of machine tools relate to error modeling closely, and to avoid the tedious calculation of Jacobian matrix, a geometric error compensation method of machine tools based on differential change construction was proposed. At first, geometric error modeling of machine tools was developed using differential change matrices of coordinate frames. According to the forward kinematic chain of the machine tool, differential change matrix of each axis was established. The differential motion vector of each axis was obtained according to the properties of geometric errors. On the basis, the impacts of geometric errors of each axis on the precision of the tool were calculated. The integrated differential motion vector in the coordinate frame of tool was obtained by adding these impacts together. Then, based on homogeneous motion matrix of forward kinematics chain of the machine tool, the integrated geometric error model of the machine tool was established by transforming the integrated differential motion vector to coordinate frame of the working table. Next, the differential change construction was used to extract the corresponding column vector of differential change matrix of each axis to establish Jacobian matrix of the machine tool. The Jacobian matrix can compensate the integrated differential motion vector in the coordinated frame of tool. The differential change construction does not need extra calculation, and reuses the differential change matrices established in modeling. At last, the workpiece cutting experiments were carried out on Carver800T threeaxis machine tool. The results show that the geometric error compensation based on differential change construction is effective.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 20,2016
  • Revised:
  • Adopted:
  • Online: September 10,2016
  • Published: September 10,2016
Article QR Code