作物表型信息获取机器人底盘设计与试验
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2021YFD2000105)和中国机械工业集团有限公司青年科技基金项目(QNJJ-PY-2022-31)


Design and Experiment of Robot Chassis for Obtaining Crop-Phenotypic Information
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为进一步提升农业机器人底盘田间适应性和行驶稳定性,面向我国山东地区小麦表型信息获取作业场景,设计了一种四轮独立驱动转向的农业机器人底盘。根据小麦种植农艺需求和行驶地形环境,确定了底盘总体布局方案和主要技术参数。分别开展了底盘驱动部件、转向部件以及摆臂平衡部件设计,并进行了参数校核和元件选型。建立了关键部件ANSYS有限元模型,分别进行了摆臂平衡机构的应力形变分析和车架振动模态模拟,仿真结果表明,摆臂平衡机构的强度和刚度均能满足设计要求,车架能够有效避免因地形激励产生的共振。建立底盘ADAMS动力学仿真模型,分别进行纵向、横向稳定性分析和单侧凸起、凹坑越障性分析,仿真结果表明,底盘横纵向稳定性能够满足设计要求,摆臂平衡机构能够有效补偿单侧障碍造成的质心高度变化,提高了底盘的行驶稳定性。田间试验表明,机器人底盘具有良好的行驶性能,硬质地面直线行驶平均偏驶率为0.51%,田间地面平均偏驶率为1.13%。原地转向中心点偏移量为3.1mm,阿克曼转向最小转向半径为1.125mm。纵向翻倾角为34°,横向翻倾角为28°。单侧越障最大高度为160mm,单侧跨坑最大深度为160mm。

    Abstract:

    To enhance the field adaptability and stability of agricultural robot chassis, a four-wheel independent drive steering chassis was specifically designed for acquiring wheat phenotypic information in Shandong Province. Taking into account the agricultural requirements for wheat cultivation and the driving terrain conditions, comprehensive layout plans and main technical parameters of the chassis were determined. The design focused on the drive components, steering components, and swing arm balance components of the chassis, followed by parameter verification and component selection. An ANSYS finite element model was constructed to analyze stress deformation in the swing arm balance mechanism and simulate the vibration modes of the frame. The simulation results indicated that the swing arm balance mechanism exhibited sufficient strength and stiffness to meet the design requirements, while the frame effectively mitigated resonance caused by terrain excitation. Furthermore, an ADAMS dynamic simulation model of the chassis was established to conduct longitudinal and lateral stability analysis and assess the chassis ability to traverse single side protrusions and dents. The simulation outcomes demonstrated that both the transverse and longitudinal stability of the chassis met the design criteria, and the swing arm balance mechanism effectively compensated for changes in centroid height caused by unilateral obstacles, thereby enhancing driving stability. Field experiments confirmed the excellent driving performance of the robot chassis, with an average deviation rate of 0.51% on hard ground during straight driving and 1.13% on field terrain. The center point offset for turning in place was measured as 3.1mm, and the minimum turning radius for Ackermann turning was determined to be 1.125mm. Additionally, the longitudinal tilt angle reached 34°, while the lateral tilt angle reached 28°. It was noteworthy that the maximum height for traversing unilateral obstacles and the maximum depth for crossing unilateral pits were both 160mm.

    参考文献
    相似文献
    引证文献
引用本文

徐圣林,朱立成,韩振浩,王瑞雪,徐庆钟,贾晓峰.作物表型信息获取机器人底盘设计与试验[J].农业机械学报,2023,54(s2):388-399. XU Shenglin, ZHU Licheng, HAN Zhenhao, WANG Ruixue, XU Qingzhong, JIA Xiaofeng. Design and Experiment of Robot Chassis for Obtaining Crop-Phenotypic Information[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(s2):388-399.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-11
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-08-25
  • 出版日期: