基于改进YOLO v5s的复杂环境下蔗梢分叉点识别与定位
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广西民族大学科研项目(302210506)和广西创新发展重大项目(桂科AA22117006)


Identification and Height Localization of Sugarcane Tip Bifurcation Points in Complex Environments Based on Improved YOLO v5s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    甘蔗蔗梢分叉点的精确识别与高度定位是实现甘蔗收获机切梢器实时控制的关键技术之一,也是提高甘蔗收获机械化水平和降低甘蔗含杂率的重要途径。针对甘蔗地环境复杂、光照变化大、蔗梢分叉点相互遮挡等问题,首先通过田间调查,并现场测试、分析甘蔗生长点、甘蔗分叉点及相互关系的特征规律,采集图像的甘蔗分叉点的统计分析,并结合现场对甘蔗分叉点高度的测量统计分析,发现其均具有明显的正态统计特征。接着,提出了一种基于改进YOLO v5s的蔗梢分叉点识别方法。该方法采用单目和双目相机在广西大学扶绥农科基地采集甘蔗图像数据,并进行数据预处理和标注,构建了甘蔗蔗梢分叉点数据集。然后,在YOLO v5s中引入BiFPN特征融合结构和CA注意力机制,以增强不同层次特征的交互和表达能力,并使用GSConv卷积和Slim-Neck范式设计,在原始模型主干网络中引入Ghost模块替换原始普通卷积,来降低模型的计算量和参数量,提高模型的运行效率。最后,通过在现场采集的数据集上进行训练和测试,验证了该方法的有效性和优越性。实验结果表明,该方法在甘蔗蔗梢分叉点数据集上平均精确率达到92.3%、召回率89.3%和检测时间19.3ms,相比原始YOLO v5s网络,平均精确率提高5个百分点,召回率提高4个百分点,参数量降低43%,模型内存占用量减少5.5MB,检测时间减少0.7ms。最后,根据甘蔗分叉点具有明显的正态统计特征的规律,利用该特征结合双目视觉的定位算法,可为开展甘蔗收获机切梢的特征识别、切梢器高度定位及实时控制研究奠定理论及技术基础。

    Abstract:

    The precise identification and height positioning of the bifurcation points of sugarcane tips is one of the key technologies for achieving realtime control of sugarcane harvester cutters, and is also an important way to improve the mechanization level of sugarcane harvesting and reduce sugarcane impurity content. In response to the complex environment of sugarcane fields, significant changes in lighting, and mutual obstruction of sugarcane bifurcation points, the field investigations, on-site testing and analysis of the characteristics of sugarcane growth points, sugarcane bifurcation points, and their interrelationships were firstly conducted, statistical analysis of sugarcane bifurcation points in images was collected, and combined with on-site measurement and statistical analysis of the height of sugarcane bifurcation points, it was found that they all had obvious normal statistical characteristics. Secondly, a sugarcane tip bifurcation point recognition method was proposed based on improved YOLO v5s. In this method, monocular and binocular cameras were used to collect sugarcane image data in Fusui Agricultural Science Base of Guangxi University, and data preprocessing and labeling were carried out to build a data set of sugarcane tip bifurcation points. Then BiFPN feature fusion structure and CA attention mechanism were introduced into the backbone network of YOLO v5s to enhance the interaction and expression ability of different levels of features, and using GSConv convolution, Slim-Neck normal form design, and the Ghost module was introduced into the original model backbone network to replace the original ordinary convolution in Neck, in order to reduce the computational and parameter complexity of the model and improve its operational efficiency. Finally, the effectiveness and superiority of this method were verified through training and testing on on-site collected datasets. The experimental results showed that this method achieved an average accuracy of 92.3%, a recall rate of 89.3%, and a detection time of 19.3ms on the sugarcane tip bifurcation point dataset. Compared with the original YOLO v5s network, the average accuracy was improved by 5 percentage points, the recall rate was improved by 4 percentage points, the parameter quantity was reduced by 43%, the model size was reduced by 5.5MB, and the detection time was reduced by 0.7ms. Finally, based on the obvious normal statistical characteristics of sugarcane bifurcation points, this feature can be combined with binocular vision positioning algorithms to lay a theoretical and technical foundation for conducting research on feature recognition of sugarcane harvester cuttings, height positioning of cuttings, and real-time control.

    参考文献
    相似文献
    引证文献
引用本文

李尚平,卞俊析,李凯华,任泓宇.基于改进YOLO v5s的复杂环境下蔗梢分叉点识别与定位[J].农业机械学报,2023,54(11):247-258. LI Shangping, BIAN Junxi, LI Kaihua, REN Hongyu. Identification and Height Localization of Sugarcane Tip Bifurcation Points in Complex Environments Based on Improved YOLO v5s[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(11):247-258.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-07-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-10
  • 出版日期: