流固耦合作用下斜流泵转子动力学特性研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2021YFC3090404)和中国博士后科学基金项目(2021M701535)


Rotor Dynamic Characteristics of Oblique Flow Pump under Action of Fluid-structure Interaction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了研究斜流泵转子系统的动力学特性,以某型号的斜流泵作为研究对象,采用计算流体力学软件CFX 2021R1和有限元分析软件ANSYS Workbench 2021R1平台,对斜流泵转子系统的干湿模态固有频率和振型、临界转速以及基于流固耦合的瞬态动力学进行了求解,研究了叶轮叶片不同位置的变形与应力分布,对比分析了不同流量工况对叶轮叶片变形与应力分布的影响。结果表明:湿模态下转子固有频率会下降,同时随着阶数的增加,固有频率下降程度逐渐明显,第3阶模态时下降程度最小,下降率Δf为9.82%,第6阶模态时下降程度最大,下降率Δf为44.31%。计算所得第2阶模态的临界转速为7.369r/min,远大于转子工作转速,说明转子系统在工作转速下运行时不会发生共振,符合转子动力学的设计要求,能够稳定运转。叶轮叶片背面与工作面总变形量的变化趋势和变形量基本一致,叶片工作面出口叶顶位置变形量最大,幅值达到2.6755mm,各个位置处工作面变形量都大于背面,最大变形量差值为0.0358mm,叶顶处变形量都大于叶根处,最大差值为1.0177mm;叶片工作面进口叶顶处与背面处应力变化趋势和应力幅值大致相似,叶片工作面进口叶顶处与出口叶根处应力幅值都大于相应背面处,而在叶片背面出口叶根处应力幅值大于工作面处。叶片出口处测点应力幅值明显大于进口处测点,叶片背面出口叶根处等效应力最大,最大幅值约6MPa。不同流量工况下叶片变形量的变化趋势相似,随着流量增大,叶轮叶片各位置处变形量逐渐减小。0.6Q时叶片变形量随时间变化波动最大,最大变形量为3.0672mm,出现在叶片出口叶顶位置;在叶片叶顶处,随流量增大,应力波动逐渐减小,叶片叶根处,Q时应力幅值波动最大,进口与出口应力波动最小处分别出现在0.6Q与0.8Q流量工况,各位置最大等效应力为12.456MPa,叶根处每一个应力波动结束后,0.6Q与0.8Q应力曲线会额外多一次小波动,因此应避免泵在小流量工况下运行,并且应加强叶轮叶根处叶片厚度。研究结果可以为斜流泵转子系统运行稳定性分析以及叶轮叶片的结构优化设计提供参考。

    Abstract:

    Taking a certain type of oblique flow pump as the research object, the computational fluid dynamics software CFX 2021R1 and the finite element analysis software ANSYS Workbench 2021R1 platform were used to solve the natural frequency and mode shape of the dry and wet mode of the oblique flow pump rotor system. The critical speed and the transient dynamics based on fluid-structure coupling, the deformation and stress distribution of the impeller blades at different positions were studied, and the influence of different flow conditions on the deformation and stress distribution of the impeller blades was compared and analyzed. The results showed that with an increase in the order, the natural frequency was gradually decreased. The 3rd order mode had the least decline rate at 9.82% while the 6th order mode had the highest decline rate at 44.31%. This confirmed the findings that the natural frequency of the rotor would decrease in the wet mode. The critical speed of the calculated second-order mode was 7369r/min, which was much greater than the rotor working speed. This indicated that the design requirements of the rotor dynamics met as the rotor system would not resonate when operating at working speed hence resulting in a stable operation. The deformation trends between the rear side of the blade and the working side of the impeller blade were quite similar. On the working surface, the deformation at the upper span of the blade towards the outlet was the largest. When the amplitude reached 2.6755mm, the deformation at each given position on the impeller blade working surface was higher than the rear surface with a maximum deformation of 0.0358mm. The deformation at the upper span of the blade was higher than at the root of the blade with the maximum difference being 1.0177mm. The highest amplitude reached 2.6755mm. Considering the stress change and stress amplitude trend, it was revealed that at the upper span of the blade near the inlet part were roughly similar on both sides. The stress amplitude graphs showed that towards the outlet portion of the blade, the upper span and root on the working surface had higher amplitudes than on the corresponding rear surface. The amplitude of the monitoring point at the outlet of the blade was significantly greater than that of the monitoring point at the inlet. On the rear surface, the equivalence force at the root of the blade towards blade was the largest, and the largest value reached about 6MPa. The change trend of blade deformation under different flow conditions was similar, and as the flow rate increased, the amount of deformation at each position of the impeller blade gradually decreased. At 0.6Q, the amount of blade deformation fluctuated the most with time. The maximum deformation was 3.0672mm, which appearred at the upper span of the impeller blade towards the outlet. At the upper span of the blade, as the flow rate increased, the stress fluctuation gradually decreased, at the blade root, the stress amplitude fluctuated the most at Q. The smallest fluctuations in inlet and outlet stress occurred under 0.6Q and 0.8Q flow conditions, respectively, and the maximum equivalent force was 12.456MPa. At the blade root, after each stress fluctuation, the 0.6Q and 0.8Q stress curve would have an additional small fluctuation, therefore operating the pump under small flow conditions must be avoided and also the blade thickness at the impeller root should be strengthened. The research results can provide a reference for the operation stability analysis of the oblique flow pump rotor system and the structural optimization design of the impeller blades.

    参考文献
    相似文献
    引证文献
引用本文

许正萱,张帆,陈轲,祝路峰,张金凤,宋梦斌.流固耦合作用下斜流泵转子动力学特性研究[J].农业机械学报,2022,53(s2):179-187. XU Zhengxuan, ZHANG Fan, CHEN Ke, ZHU Lufeng, ZHANG Jinfeng, SONG Mengbin. Rotor Dynamic Characteristics of Oblique Flow Pump under Action of Fluid-structure Interaction[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(s2):179-187.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-06-08
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-08-08
  • 出版日期: