轴流泵装置反转水动力特性研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(51376155)、江苏省自然科学基金项目(BK20190914)和江苏省高校优势学科建设项目(PAPD)


Reversal Hydrodynamic Characteristics of Axial Flow Pump System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了探究轴流泵装置反转运行条件下的水动力特性,采用试验测量结合数值模拟的方法,对某配有常规单向叶轮的轴流泵装置的反转运行特性进行了研究,分析了轴流泵装置包括反水泵工况、反向发电工况的能量特性和内流特性。结果表明,应用单向叶轮的轴流泵装置进行反转抽水的扬程和效率均较低,高效点的扬程仅为常规泵工况高效点扬程的0.38倍,高效点的效率仅为常规泵工况的0.55倍。反水泵工况下的压力脉动信号成分较为复杂,泵装置出水流道的流态较差,不同流量工况下的叶片非工作面均存在较大范围的回流区。反向发电工况下,最高效率点向大流量偏移,出现在Qd=1.63流量工况,高效区的范围明显增大,达到了泵工况的1.53倍,在大流量工况下仍能维持较高水平的水力效率。反向发电工况下水泵叶片非工作面的极限流线较为平顺,叶片工作面的压力梯度分布较为均匀。研究成果为特殊利用条件下的轴流泵装置的安全稳定运行提供了参考。

    Abstract:

    In order to explore the hydrodynamic characteristics of axial flow pump device under reverse operation condition, the reverse operation characteristics of an axial flow pump device with conventional one-way impeller were studied by experimental measurement combined with numerical simulation. The energy characteristics and internal flow characteristics of the axial flow pump device, including the reverse pump condition and the reverse power generation condition were analyzed. The results showed that the head and efficiency of reverse pumping by axial flow pump device with oneway impeller were low. The head at high efficiency point was 0.38 times of that at high efficiency point under conventional pump condition, and the efficiency at high efficiency point was 0.55 times of that under conventional pump condition. The pressure pulsation signal component under the reverse pump condition was relatively complex, and the flow pattern of the outlet channel of the pump device was poor. There was a large range of recirculation zone in the nonworking face of the blade under different flow conditions. Under the reverse power generation condition, the maximum efficiency point shifted to the large flow rate, which appeared at the Qd=1.63 flow rate condition. The range of the high efficiency zone was increased significantly, reaching 1.53 times of the pump condition, and it can still maintain a high level of hydraulic efficiency under the large flow rate condition. Under the condition of reverse power generation, the limiting current line of non-working face of pump blade was relatively smooth, and the pressure gradient distribution of blade working face was relatively uniform. The research results can provide a reference for the safe and stable operation of axial flow pump device under special utilization conditions.

    参考文献
    相似文献
    引证文献
引用本文

张校文,汤方平,张文鹏,石丽建,葛恒军,袁海霞.轴流泵装置反转水动力特性研究[J].农业机械学报,2022,53(8):163-172. ZHANG Xiaowen, TANG Fangping, ZHANG Wenpeng, SHI Lijian, GE Hengjun, YUAN Haixia. Reversal Hydrodynamic Characteristics of Axial Flow Pump System[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(8):163-172.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-10-04
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-11-27
  • 出版日期: