黄土高原坡地土壤与旋耕部件互作离散元仿真参数标定
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2016YFD0700503)和陕西省科技重大专项(2020zdzx03-04-01)


Calibration of Discrete Element Simulation Parameters of Sloping Soil on Loess Plateau and Its Interaction with Rotary Tillage Components
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对黄土高原坡地土壤-旋耕部件互作机理研究以及坡地专用旋耕机具设计缺乏准确可靠离散元仿真参数的问题,以典型坡地粘壤土(含水率13.4%±1%)为研究对象,选取EDEM中Hertz-Mindlin with JKR Cohesion接触模型,对相关仿真参数进行标定。首先,对土壤颗粒间接触参数进行了标定,以土壤颗粒的仿真堆积角为响应值,基于Design-Expert软件中Box-Behnken的方法,确定了土壤堆积角的回归模型;通过模型寻优得到了恢复系数、静摩擦因数、滚动摩擦因数及表面能参数分别为0.15、0.33、0.05和9.04J/m2,此时土壤堆积角仿真值为41.59°,与实测值相对误差为3.8%。其次,对土壤与旋耕刀材料65Mn钢的接触参数进行了标定:通过静摩擦、斜板及碰撞等试验得到了土壤与65Mn钢之间静摩擦因数、滚动摩擦因数和恢复系数的范围,进一步以土壤在65Mn钢板上的静滑动摩擦角为响应值,基于Box-Behnken的方法得到了土壤静滑动摩擦角的回归模型;对该模型寻优得到了土壤颗粒与65Mn钢间的静摩擦因数、滚动摩擦因数及恢复系数分别为0.50、0.06和0.18,此时静滑动摩擦角仿真值为24.0°,与实测值相对误差为1.7%。最后,通过坡地旋耕试验验证模型参数的有效性:土壤颗粒水平、侧向位移实测值和仿真值最大相对误差分别为4.3%和5.1%。结果表明标定的参数准确可靠。

    Abstract:

    Aiming at the problem of lack of accurate and reliable discrete element simulation parameters for the research on the interaction mechanism of soil-rotary tillage components with sloping soil on the Loess Plateau and the optimized design of special rotary tillage equipment, taking the typical slope clay loam soil with common moisture content of 13.4%±1% on the Loess Plateau as the research object, the relevant parameters were calibrated based on Hertz-Mindlin with JKR Cohesion contact model in EDEM. Firstly, the contact parameters between soil particles were calibrated. The simulated accumulation angle of soil particles was used as the response value, the regression model of soil accumulation angle was obtained based on the Box-Behnken optimization method in the Design-Expert software. The regression model was optimized by using the measured accumulation angle as the target, and the optimization results of restitution coefficient, static friction coefficient, rolling friction coefficient and surface energy parameters between soil particles were 0.15, 0.33, 0.05 and 9.04J/m2, respectively. Under the optimal parameter combination, the simulation value of soil accumulation angle was 41.59°, and the relative error with the measured value was 3.8%. Then, the contact parameters between soil and rotary tillage knife material 65Mn steel were calibrated. The numerical range of the above three parameters between soil and 65Mn steel was obtained by static friction test, oblique plate test and impact test. Based on this, the static sliding friction angle of soil on 65Mn steel was obtained based on Box-Behnken optimization method. The regression model was optimized by using the measured static sliding friction angle as the target, and the optimization results of static friction coefficient, rolling friction coefficient and restitution coefficient between soil particles and 65Mn steel were 0.50, 0.06 and 0.18, respectively. Under the optimal parameter combination, the simulation value of static sliding friction angle was 24.0°, and the relative error with the measured value was 1.7%. Finally, through the comparative analysis of field test and simulation test of slope rotary tillage, it was concluded that the maximum relative errors of horizontal and lateral displacement of soil particles were 4.3% and 5.1% respectively, within the acceptable range. It showed that the calibration results and research methods of discrete element simulation parameters were accurate and reliable.

    参考文献
    相似文献
    引证文献
引用本文

孙景彬,刘琪,杨福增,刘志杰,王峥.黄土高原坡地土壤与旋耕部件互作离散元仿真参数标定[J].农业机械学报,2022,53(1):63-73. SUN Jingbin, LIU Qi, YANG Fuzeng, LIU Zhijie, WANG Zheng. Calibration of Discrete Element Simulation Parameters of Sloping Soil on Loess Plateau and Its Interaction with Rotary Tillage Components[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(1):63-73.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-09-15
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-01-10
  • 出版日期: