手机联用的苹果糖度便携式检测装置设计与试验
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2016YFD0400905-05)


Design of Portable Device for Testing Sugar Content of Apples Combined with Mobile Phones
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于可见/近红外光谱技术设计了手机联用的苹果糖度便携式检测装置,旨在通过优选特征波段确定适合苹果糖度检测的波段范围及光学传感器,并通过与手机的联用完成苹果糖度的高效、便携、低成本的无损检测。选择STS-NIR微型光纤光谱仪(波长范围650~1100nm),利用实验室自行搭建的光谱采集平台对120个苹果进行光谱采集,通过偏最小二乘(PLS)算法对全波长数据进行建模,并采用连续投影法(SPA)、遗传算法(GA)和竞争自适应重加权抽样法(CARS)等变量选择方法对全波长进行特征波段的识别来选择有效波长。变量选择结果显示,所得3组特征波段含有重合项,且均包含与苹果糖度有关的变量。利用偏最小二乘(PLS)算法建立关于苹果糖度基于3组特征波段的预测模型,并对3组结果进行分析,包括对预测相关系数、预测均方根误差比较等,来评估所建模型的准确性。试验结果表明,利用3组特征波段所得建模结果均比较良好,预测相关系数都在0.93以上,其中GA-PLS模型对苹果糖度的预测效果最优,预测相关系数可达0.9447。根据上述所得特征波段的高度重合项,确定了检测苹果糖度的特征波段及其对应的光学传感器,并基于所设计的苹果糖度便携式检测装置对另取的40个苹果进行试验验证,苹果糖度的预测相关系数可达0.8822。结果表明,本文所设计的基于特征波段的手机联用的苹果糖度便携式检测装置,成本低、便于携带、检测准确率高,具有实现苹果糖度的实时无损检测的可行性。

    Abstract:

    Targeting on the demand of the market for apple quality detection, a handheld device for apple sugar content detection combined for mobile phone based on visible/near infrared spectroscopy technology was designed to determine the wavelength range and spectral sensor suitable for apple sugar content detection by optimizing the characteristic wavelength. The combination with the mobile phone completed the highefficiency, nondestructive and lowcost detection of apple sugar content. An STS-NIR miniature fiber optic spectrometer (wavelength range 650~1100nm) was selected to collect the spectra of 120 apples by using the spectrum acquisition platform built by the laboratory itself, and the true sugar content of the measured apples was obtained through the sugar refractometer. The partial least square (PLS) algorithm was used to model the fullwavelength data, and variable selection methods such as successive projection algorithm (SPA), genetic algorithm (GA) and competitive adaptive reweighted sampling method (CARS) were used to identify and simplify the characteristic bands of the fullwavelength to select the effective wavelength. Variables of the measured wavelength, and the effective wavelengths were selected according to the regression coefficient. The results of variable selection showed that the three sets of characteristic variables obtained had overlapping terms, and all of them contained wavelength variables related to the apple sugar content. The partial least squares (PLS) algorithm was used to establish a prediction model of apple sugar content based on three sets of characteristic bands variables, and the three sets of results were analyzed, including the comparison of prediction correlation coefficient (Rp), prediction root mean square error (RMSEP) to evaluate the accuracy of the built model. The experimental results showed that the modeling results obtained by using the three groups of characteristic were all good, and the predictive correlation coefficient was above 0.93, among which GA-PLS model had the best predictive effect on apple sacchariness, with the predictive correlation coefficient up to 0.9447. According to the highly overlapping coincidence term of the characteristic variables bands obtained above, the characteristic wavelength bands and their corresponding optical sensor for detecting apple sugar content saccharification were determined, and 40 other apples were tested and verified based on the designed handheld device for testing the sugar content of apples. The correlation coefficient was predicted to be 0.8822 based on the designed a handheld device for apple sugar content detection combined for mobile phone. The results showed that the device designed was of low cost, easy to carry and had high detection accuracy and efficiency, and it was feasible to realize the realtime nondestructive testing of apples sugar content. 

    参考文献
    相似文献
    引证文献
引用本文

乔鑫,彭彦昆,王亚丽,李龙,庄齐斌,田文健.手机联用的苹果糖度便携式检测装置设计与试验[J].农业机械学报,2020,51(s2):491-498. QIAO Xin, PENG Yankun, WANG Yali, LI Long, ZHUANG Qibin, TIAN Wenjian. Design of Portable Device for Testing Sugar Content of Apples Combined with Mobile Phones[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(s2):491-498.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-08-10
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-12-10
  • 出版日期: 2020-12-10