拖拉机电液悬挂系统动压反馈校正方法研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2017YFD0700101)


Dynamic Pressure Feedback Correction Method for Tractor Electro Hydraulic Hitch
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对拖拉机在运输重型悬挂设备时,压力冲击剧烈、拖拉机会产生较大的俯仰运动等问题,提出了在位置控制系统中加入动压反馈校正环节,增加系统阻尼比,来抑制系统压力波动。该动压反馈校正环节利用压力传感器输出信号,经过控制器微分校正后给系统输入,能够在不影响系统动态刚度的前提下,增加系统阻尼比。首先,通过建立拖拉机电液悬挂的运动学模型,分析研究了各杆件间的转角传动比,并建立了拖拉机悬挂系统的动力学模型,利用Matlab编写程序求解液压缸的负载力,建立了液压系统模型,分析了加入动压反馈校正环节后的液压系统阻尼比变化情况,给出了动压反馈参数的确认方法。其次,应用Matlab/Simulink对所建立的模型进行仿真分析,仿真结果表明:在液压系统提升过程中压力变化较大,最大压力达到5.8MPa,校正后的电液悬挂系统压力波动较小,最大压力仅4.0MPa,在液压系统受到干扰力冲击时,原液压系统压力波动范围为2.7MPa,而采用动压反馈校正后的位置控制压力波动范围为1.1MPa,验证了该校正方法能够有效地提高系统阻尼比,抑制压力波动。最后,搭建试验平台进行试验验证,试验结果表明:拖拉机电液悬挂提升过程中未校正系统的提升最大压力为4.6MPa,且压力振荡下降,而校正后的系统最大压力仅3.8MPa,压力较为平缓。冲击干扰试验中原系统的最大压力达到6.5MPa,压力波动范围为6.0MPa,而校正后的系统最大压力仅为4.6MPa,压力波动范围为4.2MPa,相对于原系统锁止工况,压力波动范围降低了30%。本文提出的拖拉机电液悬挂动压反馈校正方法,可以很好地抑制拖拉机电液悬挂液压缸压力波动,从而达到保护农机具,降低俯仰运动,提高驾驶员舒适性的目的。

    Abstract:

    When the tractor transports the heavy hitch equipment, the hydraulic cylinder pressure impact of the electro-hydraulic hitch is severe, and the tractor will produce large pitching movement. The dynamic pressure feedback correction was added to the position control system to increase the system damping ratio to suppress the system pressure fluctuation. The output signal of the pressure sensor was collected and input to the system through the controller differentiator, which could increase the damping ratio of the system without affecting the dynamic stiffness of the system. The kinematics model of tractor electro-hydraulic hitch was established, and the angle transmission ratio of each link was analyzed. The dynamic model of the tractor hitch system was established, and the load force of the hydraulic cylinder was solved by programming with Matlab. The hydraulic system model was established, the damping ratio of the hydraulic system after adding dynamic pressure feedback correction link was analyzed, and the confirmation method of dynamic pressure feedback parameters was given. Matlab/Simulink was used to simulate the model. The simulation results showed that during the lifting process of the hydraulic system, the pressure was changed greatly, and the maximum pressure reached 5.8MPa. After correction, the pressure fluctuation of the electro-hydraulic hitch system was small, and the maximum pressure was only 4.0MPa. When the interference force impacted the hydraulic system, the pressure fluctuation range of the original hydraulic pressure system was 2.7MPa. In comparison, the position control pressure fluctuation range after using dynamic pressure feedback correction was 1.1MPa. Therefore, the damping ratio of the system could be effectively improved, and the pressure fluctuation could be suppressed by the method. The test platform was built. The test results showed that the maximum lifting pressure of the uncorrected system was 4.6MPa and the pressure oscillation was decreased. In contrast, the maximum pressure of the corrected system was only 3.8MPa, and the pressure was relatively gentle. In the impact interference test, the maximum pressure of the original system reached 6.5MPa, and the pressure fluctuation range was 6MPa. In contrast, the corrected maximum pressure was only 4.6MPa, and the pressure fluctuation range was 4.2MPa. Compared with the locking condition of the original system, the pressure fluctuation range was reduced by 30%. The results showed that the proposed dynamic pressure feedback correction method of the tractor electro-hydraulic hitch can well restrain the pressure fluctuation of the hydraulic cylinder of the tractor electro-hydraulic hitch, protect the agricultural machinery, reduce the pitching movement and improve the comfort of the driver.

    参考文献
    相似文献
    引证文献
引用本文

刘长卿,华博,杜岳峰,李臻,朱忠祥,毛恩荣.拖拉机电液悬挂系统动压反馈校正方法研究[J].农业机械学报,2020,51(s1):535-541. LIU Changqing, HUA Bo, DU Yuefeng, LI Zhen, ZHU Zhongxiang, MAO Enrong. Dynamic Pressure Feedback Correction Method for Tractor Electro Hydraulic Hitch[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(s1):535-541.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-08-04
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-11-10
  • 出版日期: