基于温湿度控制的红外热风联合干燥机设计与试验
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

北京市自然科学基金面上项目(6182022)、国家自然科学基金项目(31301593)和国家中药材产业技术体系项目(CARS-21)


Design and Experiment of Infrared-hot Air Combined Dryer Based on Temperature and Humidity Control
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高热风干燥热效率和干燥均匀性,设计了一款基于温湿度控制的红外热风联合干燥机,分析了气流分配室作为干燥机的关键部件对腔室内部流场分布的影响规律。结构仿真中,以气流控制方程和标准k-ε湍流模型为理论模型,利用CFD软件对气流分配室内腔进行数值模拟分析,得到气流在气流分配室内腔的流动特征,对原物理模型的腔体厚度H进行结构优化,进行了试验验证。结果表明,加入均风板可以显著提高气流分配室内气流速度偏差比和速度不均匀系数;优化后腔体厚度H=100mm的气流分配室能够很好解决出风口气流分布不均的现象,出风口速度偏差比和速度不均匀系数分别由44.9%和30.2%降低至7.2%、7.0%。验证试验结果表明,平均速度相对误差为4.21%,速度不均匀系数相对误差为1.4%,速度偏差比的最大误差为1.48%,说明结构设计合理,均化气流的效果明显。以鲜面条为研究对象,对该机性能进行试验,得到此红外热风联合干燥时间(50min),比单一热风干燥的时间缩短了16.7%。

    Abstract:

    In order to improve the problems of low drying efficiency and uneven drying in hot air drying technology, an infrared-hot air combined dryer was designed. The influence law of air distribution chamber on flow field distribution as the core component of dryer was analyzed. Based on the airflow control equation and the standard k-ε turbulence model, the CFD software was used to conduct numerical simulation analysis on the air distribution chamber. The flow characteristics of the airflow in the airflow distribution chamber were obtained, and the cavity thickness H of the original physical model were optimized and tested. The calculation results showed that the speed deviation ratio (E) and the non-uniformity coefficient (M) can be significantly improved by the addition of the uniformly distributed air plate. The optimized model of airflow distribution chamber with the cavity thickness H=100mm can solve the phenomenon well that the airflow distribution was non-uniformity. The E and M values of the air outlet were decreased from 44.9% and 30.2% to 7.2% and 7.0%, respectively. The results showed that the average speed error was 4.21%, and the relative error of M and E values was 1.4% and 1.48%, respectively. This showed the design was reasonable and the effect of uniform airflow was obvious. The performance of the device was tested with noodles. The results showed that the drying time of infrared-hot air combined dryer was 50min, which was 16.7% shorter than that of hot air drying alone.

    参考文献
    相似文献
    引证文献
引用本文

吴敏,段豪,王振文,栗阳,郑志安,段乔.基于温湿度控制的红外热风联合干燥机设计与试验[J].农业机械学报,2020,51(s1):483-492. WU Min, DUAN Hao, WANG Zhenwen, LI Yang, ZHENG Zhian, DUAN Qiao. Design and Experiment of Infrared-hot Air Combined Dryer Based on Temperature and Humidity Control[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(s1):483-492.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-08-10
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-11-10
  • 出版日期: