基于LiDAR的对靶喷雾实时控制系统设计与试验
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

江苏省基础研究计划-青年基金项目(BK20170930)、国家自然科学基金项目(31901239)、国家林业局“948”项目(2015-4-56)和江苏省农业科技自主创新资金项目(CX(18)1007)


Design and Experiment of Real-time Control System for Target Spraying Based on LiDAR
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对自动对靶喷雾中延时喷雾问题设计了实时控制对靶喷雾系统,该系统以二维激光雷达(Laser detection and ranging,LiDAR)作为探测器,利用地速传感器(True ground speed sensor,TGSS)获取喷雾车实时速度,建立了自适应延时喷雾模型,模型可不断调整喷雾延时时间。自适应延时喷雾模型包括延时存储器和延时计数器。延时存储器利用FIFO缓存区暂存喷雾指令;延时计数器指向延时存储器地址,其利用当前车速计算延时指数,取出对应延时存储器地址的喷雾指令并发送给电磁阀控制器,实现对靶喷雾。试验部分首先对系统响应时间进行分析,包括识别靶标时间、计算喷雾指令时间、通信时间、电磁阀响应时间,试验结果表明,系统响应时间为160ms,延时存储器共42个延时单元;其次通过Proteus仿真比较了单片机在采用M法、T法计算TGSS发出信号频率的准确性,结果表明M法更适合于本文所述测速系统的频率计算;在TGSS安装角确定后,喷雾车速度与方波信号的频率成正比关系,通过拟合确定了比例系数0.0099,拟合优度为0.9998;最后通过试验验证了系统的整体有效性,并测量了实时控制对靶喷雾系统的可识别最小间距,试验结果表明,可识别的最小间距在80~180mm之间,系统可识别靶标间距的能力随着喷雾车速度的提升而降低,当靶标间距大于180mm时,系统均可有效识别靶标。

    Abstract:

    Aiming at the problem of delayed spray in automatic target spraying, a real-time control target spray system was designed. The system took the laser detection and ranging (LiDAR) as the detector and the real-time speed of the spray vehicle was obtained by using the true ground speed sensor (TGSS), and a delayed spray model was established, which continuously adjusted the spray delay time. The delay spray model included delay memory and delay counter. The delay memory used the FIFO buffer to store the spray instruction temporarily. The delay counter was pointed to the delay memory address, which used the current vehicle speed to calculate the delay index. The delay counter took out the spray instruction corresponding to the delay memory address and sent it to the solenoid valve controller to realize the target spray. The response time of the system was firstly analyzed in the experimental part, including identifying target time, calculating the spray command time, communication time and the response time of the solenoid valve. The experimental results showed that the system response time was 160ms and the delay memory had 42 delay units. Secondly, the accuracy of the MCU in calculating the frequency of the TGSS signal was compared by using the M method and T method with the Proteus simulation. Experimental results showed that the M method was more suitable for the frequency calculation of the described speed measurement system. Then, the speed of the spray vehicle was proportional to the frequency of the square wave signal after the installation angle of TGSS was determined. The proportional coefficient was determined to be 0.0099 through fitting. The r-squared of linear fitting of speed and frequency was 0.9998. Finally, the experiment verified the overall effectiveness of the real-time control to the target spray system and measured the minimum recognizable spacing of the real-time control to the target spray system. The experimental results showed that the minimum recognizable spacing was between 80mm and 180mm, the ability of the system to recognize the target spacing was decreased with the increase of the speed of the spray vehicle, when the target spacing was greater than 180mm, the system can identify targets effectively.

    参考文献
    相似文献
    引证文献
引用本文

袁鹏成,李秋洁,邓贤,周宏平,茹煜,周梦飞.基于LiDAR的对靶喷雾实时控制系统设计与试验[J].农业机械学报,2020,51(s1):273-280. YUAN Pengcheng, LI Qiujie, DENG Xian, ZHOU Hongping, RU Yu, ZHOU Mengfei. Design and Experiment of Real-time Control System for Target Spraying Based on LiDAR[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(s1):273-280.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-07-31
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-11-10
  • 出版日期: