SPEI和植被遥感信息监测西南地区干旱差异分析
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(52079103)


Difference Analysis of SPEI and Vegetation Remote Sensing Information in Drought Monitoring in Southwest China
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于西南地区2000—2018年不同时间尺度的标准化降水蒸散指数(SPEI-1、SPEI-3、SPEI-12),应用线性趋势法和曼肯德尔检验(Mann-Kendall test, M-K)法分析了西南地区气象干旱的时间变化特征,评价了日光诱导叶绿素荧光(SIF)、归一化植被指数(NDVI)以及增强型植被指数(EVI)等植被遥感数据对区域植被状况监测的有效性及差异性。结果表明:2000—2018年西南地区SPEI整体上呈微弱增加趋势,其中,2000—2013年间,SPEI-12呈下降趋势(趋势率为-0.05/(10a),R2=0.295),2014—2018年间,SPEI-12时间序列呈上升趋势(趋势率为0.04/(10a),R2=0.094),说明在气候变化背景下,近年来西南地区的干旱化趋势有所缓解。SPEI-12的趋势突变点发生在2016年和2017年。相对于植被绿度指数NDVI和EVI,SIF对植被生长季发生的长期和短期干旱事件均表现出较大负异常,说明SIF可快速获取水分胁迫下的植被光合作用信息。森林、农田和草地的SIF与不同时间尺度气象干旱指数的相关性均高于NDVI和EVI,SIF对森林、农田及草地植被生态系统干旱监测的敏感性优于传统的植被绿度指数;草地的SIF与SPEI-1的相关性更高(R=0.859, P<0.01),其光合作用对短期水分胁迫最为敏感。本研究可为西南地区干旱的综合应对、水资源管理调控及生态治理提供科学依据。

    Abstract:

    Since 2000, drought has occurred frequently in Southwest China, which has seriously affected social production and ecological environment. Therefore, studying the temporal evolution characteristics of meteorological drought and its impact on vegetation growth can provide theoretical basis for scientific management of regional water resources and ecological control. Based on the monthly precipitation and temperature data of Southwest China from 2000 to 2018, the standardized precipitation evapotranspiration index of different time scales was calculated. The linear trend method and Mann-Kendall (M-K) test were used to analyze the temporal variation characteristics of meteorological drought in Southwest China. The effectiveness and difference of solarinduced chlorophyll fluorescence (SIF), normalized differential vegetation index (NDVI) and enhanced vegetation index (EVI) in vegetation stress monitoring were evaluated. Furthermore, the response of vegetation to drought was also explored. The results showed that SPEI values showed a weak increasing trend in all time scales from 2000 to 2018. From 2000 to 2013, SPEI-12 showed a downward trend (the trend rate was -005/(10a), R2=0.295), and from 2014 to 2018, SPEI-12 time series showed an increasing trend (the trend rate was 004/(10a), R2=0.094), indicating that the drought trend in Southwest China was alleviated in recent years under the background of climate change. The turning point of SPEI-12 time series occurred in 2016 and 2017 respectively. Compared with NDVI and EVI, SIF showed obvious negative anomalies for both longterm and shortterm drought events during vegetation growing season, and it can quickly obtain the information of vegetation photosynthesis under water stress. The correlation between SIF of forest, farmland and grassland and meteorological drought index at different time scales was higher than NDVI and EVI, which meant that the sensitivity of SIF of forest, farmland and grassland vegetation ecosystem to drought monitoring was better than that of traditional vegetation greenness index. The correlation between SIF of grassland and SPEI-1 was higher (R=0.859, P<0.01), which indicated the grassland photosynthesis was more sensitive to shortterm water stress. The research results can provide scientific basis for comprehensive drought coping, water resources management and ecological control in Southwest China. 

    参考文献
    相似文献
    引证文献
引用本文

史晓亮,吴梦月,丁皓. SPEI和植被遥感信息监测西南地区干旱差异分析[J].农业机械学报,2020,51(12):184-192. SHI Xiaoliang, WU Mengyue, DING Hao. Difference Analysis of SPEI and Vegetation Remote Sensing Information in Drought Monitoring in Southwest China[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(12):184-192.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-08-22
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-12-10
  • 出版日期: 2020-12-10