基于近红外光谱的掺伪油茶籽油检测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金面上项目(31772065)和国家级大学生创新创业训练计划项目(201810712028)


Detection on Adulterated Oil-tea Camellia Seed Oil Based on Near-infrared Spectroscopy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了探索采用近红外光谱技术检测掺伪油茶籽油的潜力,以12个产地的玉米油、花生油、菜籽油和大豆油为掺杂油,以5个产地的油茶籽油为被掺杂油,制备了455份掺伪质量分数为0、1%、3%、6%、10%、15%和20%的掺伪油茶籽油,采集了所制备样品在833~2500nm范围内的近红外光谱。对采集的近红外光谱进行多元散射校正处理后,应用Kennard-Stone样本划分法按2∶1的比例将样本划分为校正集和测试集。采用连续投影算法(SPA)、无信息变量消除算法和竞争性自适应重加权算法提取表征掺伪油茶籽油样本的特征波长,并建立判别掺伪油茶籽油样品的支持向量机(SVM)和随机森林(RF)模型。研究结果表明,SVM模型具有较高的灵敏度,RF模型具有良好的特异性。基于SPA提取的9个特征波长所建立的RF模型的识别准确率最高,为99.34%,对掺伪质量分数为1%的掺伪油茶籽油的识别准确率达到94.74%,对掺伪质量分数为3%及以上的掺伪油茶籽油的识别准确率达到100%。本研究为掺伪油茶籽油检测仪的研发提供了基础数据。

    Abstract:

    Aiming to explore the potential of near-infrared (NIR) technology in detecting adulterated oiltea camellia seed oil, the corn oil, peanut oil, rapeseed oil and soybean oil from 12 different production areas were used as adulteration oil, and the oil-tea camellia seed oil from five different production areas were used as adulterated oil. Totally 455 adulterated oil-tea camellia seed oil samples at the adulterated mass fractions of 0, 1%, 3%, 6%, 10%, 15% and 20% were prepared. The NIR spectra of the prepared samples were obtained at the wavelength range of 833~2500nm. After the collected NIR spectra were pretreated by multiple scatter correction method, the samples were divided into a calibration set and a validation set according to the ratio of 2∶1 by using the Kennard-Stone sample partitioning method. Furthermore, successive projections algorithm (SPA), uninformative variable elimination and competitive adaptive reweighted sampling were used to extract the characteristic wavelengths (CWs) representing the adulterated oil-tea camellia seed oil samples from the investigated whole spectra. Then the support vector machine (SVM) and random forest (RF) classification models were established based on full spectra and extracted CWs. The results showed that the SVM model had higher true positive rates, while the RF model had better true negative rates. The established RF model based on the extracted nine CWs by using SPA had the highest recognition accuracy rate of 99.34%. Moreover, the recognition accuracy rate of the model was 94.74% for the adulterated oil-tea camellia seed oil samples whose adulterated mass fraction was 1%, and reached 100% for the adulterated oil samples whose adulterated mass fraction was equal to and greater than 3%. The research result provided basic data for the development of a portable detector for adulterated oil-tea camellia seed oil.

    参考文献
    相似文献
    引证文献
引用本文

郭文川,朱德宽,张乾,杜荣宇.基于近红外光谱的掺伪油茶籽油检测[J].农业机械学报,2020,51(9):350-357. GUO Wenchuan, ZHU Dekuan, ZHANG Qian, DU Rongyu. Detection on Adulterated Oil-tea Camellia Seed Oil Based on Near-infrared Spectroscopy[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(9):350-357.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-11-06
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-09-10
  • 出版日期: