基于分层模型的轮毂电机驱动车辆直接横摆力矩控制
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

军队武器装备预先研究项目(301051102)


Direct Yaw Moment Control Based on Hierarchical Model for In-wheel Motor Drive Vehicles
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高多轮轮毂电机驱动车辆动力学综合控制性能,提出了一种基于分层模型的直接横摆力矩控制策略。上层为运动跟踪控制层,设计了基于车轮转角的前馈控制器,对车辆横摆角速度稳态增益进行调节,同时将滑模控制进行改进,设计了滑模条件积分控制器进行反馈控制,使横摆角速度追踪其期望值;下层为转矩优化分配层,基于稳定性优先原则,建立了以减小轮胎负荷率为目标的优化函数,并且将控制分配问题转换为二次规划问题进行求解。依托某型8×8轮毂电机驱动样车进行实车试验,结果表明,在连续转向工况和双移线工况下,所提出的控制策略使车辆最大横摆角速度偏差分别降至理想横摆角速度的6%和9%以内。此外,该策略能够有效控制轮胎负荷率,实现转向行驶时的转矩优化分配,改善了车辆操纵稳定性。

    Abstract:

    In order to improve dynamical properties of the inwheel motor drive vehicle, a direct yawmoment control strategy with a hierarchical model was proposed. The upper layer of the strategy combined the feedforward control with the feedback control for motion tracking. More specifically, a feedforward controller based on wheel angle was designed to adjust the steadystate gain of yaw rate. Besides, the sliding mode condition integral controller was designed for feedback control, so that the yaw rate can track its expected value. The lower layer focused on the torque optimal distribution. According to the stability priority principle, the optimization function aiming at reducing the tire load rate of the vehicle was established, and the issue of torque optimal allocation was transformed into a quadratic programming problem to be solved. Based on a prototype of the 8×8 inwheel motor drive armored vehicle, a series of experiments were conducted. The experimental results showed that the proposed strategy can reduce the maximum error of yaw rate to less than 6% and 9% of the ideal yaw rate under continuous steering and double lane shifting conditions, respectively. Additionally, the proposed strategy was capable of achieving the decrease in tire load rate and the differential torque distribution of each inwheel motor. Thus the control effect was able to satisfy the requirements of continuous steering on high adhesion road and double shifting on low adhesion road. In conclusion, the proposed direct yaw moment control strategy with a hierarchical model was feasible to be applied to inwheel motor drive vehicles, and it can effectively improve the tracking ability and handling stability of the vehicle under various driving conditions.

    参考文献
    相似文献
    引证文献
引用本文

张征,马晓军,刘春光,陈路明.基于分层模型的轮毂电机驱动车辆直接横摆力矩控制[J].农业机械学报,2019,50(12):387-394.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-08-26
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-12-10
  • 出版日期: 2019-12-10