基于3D视觉的青饲机拖车车斗自动识别与定位方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2016YFD0701401)


Automatic Identification and Location Method of Forage Harvester Trailer Hopper Based on 3D Vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    根据农业生产智能化需求,提出一种基于三维视觉的青饲机拖车车斗自动识别和定位方法。该方法通过图像与点云数据处理技术相互配合,实现拖车车斗的边沿识别和空间定位。首先,利用视觉里程计概念构建相机与地面三维坐标系之间的关联,并用奇异值分解算法求解位姿变换矩阵,将相机坐标系下的3D点云进行旋转平移,并且基于地面进行阈值处理和降维;其次,采用随机抽样一致性算法完成对车斗边沿拟合以及车斗角点定位,获得机械臂喷头与车斗的相对位置;最后,通过坐标变换,将定位结果直观呈现在像素坐标系中。本文方法能够准确地定位车斗角点,描绘车斗所在区域。现场实验结果表明,该方法计算量较小、效率高、准确性高,能够满足现场作业的实时性与精度要求。

    Abstract:

    The green forage harvester fills the trailer hoppers in real time by its mechanical arm when it is cutting and collecting green forage. Recently, the process of forage filling needs to identify the position of the trailer hoppers through artificial visual recognition, and then control the rotation of the mechanical arm to the right direction, which has the problems of low efficiency, high loss, and manpower consumption. Aiming at the demand of agricultural production intellectualization, a method of automatic recognition and location of trailer hopper of forage harvester based on threedimensional vision was proposed, which combined several advanced image processing methods with point cloud data processing technologies to realize edge recognition, spatial location of trailer hopper. Firstly, the concept of visual odometer was used to construct the relationship between the camera and the ground threedimensional coordinate system, and singular value decomposition (SVD) algorithm was used to calculate the pose transformation matrix, which was used to rotate and translate the three dimension (3D) point cloud under the camera coordinate, and threshold processing and dimension reduction were carried out based on the ground. Secondly, random sample consensus (RANSAC) algorithm was used to fit the edge of the hopper and locate the corners, so the relationship between the mechanical arm nozzle and the trailer hopper was determined. Finally, the result of localization was directly reflected on the pixel coordinates through coordinate transformation. The method proposed can accurately find the corners of the hopper and depict the area where the trailer hopper was located. The experimental results showed that the proposed method was in less computation, at the same time with high efficiency and accuracy, which satisfied the realtime and accuracy requirements in field operation.

    参考文献
    相似文献
    引证文献
引用本文

苗中华,陈苏跃,何创新,金称雄,马世伟,徐双喜.基于3D视觉的青饲机拖车车斗自动识别与定位方法[J].农业机械学报,2019,50(5):43-49. MIAO Zhonghua, CHEN Suyue, HE Chuangxin, JIN Chengxiong, MA Shiwei, XU Shuangxi. Automatic Identification and Location Method of Forage Harvester Trailer Hopper Based on 3D Vision[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(5):43-49

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-11-03
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-05-10
  • 出版日期: 2019-05-10