基于机载激光雷达点云的飞行障碍物提取方法研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(41371327、41671433)


Extracting Flying Obstacles Using Airborne LiDAR Point Cloud Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    无人机搭载激光雷达扫描仪以获取机载点云已成为农作物冠层结构信息提取的理想数据源,基于机载激光雷达点云提取树木、电力塔、电力线等飞行障碍物,为无人机安全飞行提供可靠数据。首先,使用TerraSolid软件对点云进行滤波,分离地面点,提取植被树木、电力塔、电力线等障碍物,根据地物分布进行点云分幅。利用PCL点云库中随机采样一致性及稳健的特征值法构建平面模型,实现分幅后的点云非地面点及飞行障碍物提取。最后,以人工滤波结果和分类结果为参考点云,分别建立基于TIN算法的滤波结果和PCL分割结果的精度验证混淆矩阵,从而对滤波及分割提取障碍物的结果进行精度评价。研究结果表明,TerraSolid软件处理分幅点云效率优于整幅点云数据,TerraSolid及PCL两者对于处理相同分幅点云结果较为相近,其中PCL操作快捷高效,可视性较差。在提取飞行障碍物的过程中,可结合二者优势。

    Abstract:

    Laser pulse launching by LiDAR sensor has strong penetrability and sun shine as well as extreme weather has little influence on it, because of which, it can genuine acquire the three-dimensional information on the ground. It is an ideal data source for crop canopy structure information extraction. In this paper, based on the airborne laser radar data, as the goal was to extract the corresponding feature ground point. Using the TerraSolid software to classify the whole points, the points were divided into different classification, such as ground, vegetation, wire power and wire line. Meanwhile, RANdom SAmple Consensus (RANSAC) was applied to fit the plane segmentation model based on the Point cloud library (PCL), which optimized the obstacles extraction results. The TerraSolid software classification results, PCL plane segmentation fitting results with initial classification of point cloud for confusion matrix were obtained, respectively. Confusion matrix for precision evaluation was concluded. Correlation analysis was carried out on two kinds of precision evaluation. Research results show that it is better for TerraSolid to deal with block rather than the whole point cloud data. The results of TerraSolid and PCL are similar for the same point cloud. Its operation is fast and efficient but poor for the visibility. We can combine both advantages in extracting obstacles. This study basically achieved the anticipated goal of flying obstacles extraction, to provide security for the unmanned aerial vehicle (UAV) flight and help with the flight path planning.

    参考文献
    相似文献
    引证文献
引用本文

苏伟,赵晓凤,张明政,王伟.基于机载激光雷达点云的飞行障碍物提取方法研究[J].农业机械学报,2017,48(s1):79-85,97.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-07-10
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-12-10
  • 出版日期: