柔性铰链放大的叠堆式超磁致伸缩致动器建模与实验
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(51275525)


Modeling and Experimental Analysis of Stack Giant Magnetostrictive Actuator Amplified by Flexure Hinge
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为满足新型电液伺服阀的驱动要求,设计了柔性铰链放大的叠堆式超磁致伸缩致动器(FASGMA),建立了FASGMA输出位移模型,并进行了实验验证和分析。首先,根据传统GMA偏磁施加方式的特点和不足,采用永磁体和GMM棒交替排布的结构形式,设计了叠堆式超磁致伸缩致动器(SGMA),并利用柔性铰链机构放大其输出位移;然后,根据SGMA的结构特点,建立了反映轴向分布不均匀性的SGMA应变模型;接着,利用力学基本原理和有限元法对柔性铰链机构的放大比和固有频率进行了分析,提出了结构优化设计的方法,完成了放大机构结构参数的确定;在此基础上,考虑SGMA与放大机构的相互作用以及SGMA轴向应变分布规律,建立了FASGMA多自由度位移模型,确定了自由度的合理取值;最后,搭建了FASGMA测试系统,进行了阶跃和正弦激励实验,完成了模型验证。结果表明:实验与模型计算结果吻合,证明了模型准确性;在阶跃激励下,FASGMA最大位移约为130μm,响应时间约为70ms;正弦激励下,FASGMA工作频带为60Hz,对激励信号有较好的跟随特性。

    Abstract:

    Novel electro-hydraulic servo valves (EHSVs) usually require their actuators output large stroke bi-directionally. To meet these requirements, a special stack giant magnetostrictive actuator amplified by flexure hinge (FASGMA) was designed, the displacement model of this actuator was established, and experiments were conducted to verify the model. Firstly, considering the ways to provide bias magnetic field in traditional GMA, a specific structure, with permanent magnets (PMs) and short GMM rods located iteratively, was designed, whose output was amplified by a bridge-type flexure hinge. Then, based on the structure, a strain model of SGMA was established, which can describe the strain distribution along the GMM rod. In addition, the amplification ratio and eigenfrequency of the flexure hinge were analyzed by basic theories of mechanics and finite element method. Meanwhile, with an optimization design method proposed, the structural parameters of the amplifier were decided. Moreover, a multi-DOF displacement model of FASGMA was set up, which considered the interaction of flexure hinge and SGMA as well as the strain distribution along the axial direction of SGMA. After that, the number of DOF was determined. Finally, an experimental system was established, and the proposed model was verified by both step and sinusoidal experiments. The results indicated that when the FASGMA was excited by step signals, the maximum output displacement was about 130μm, the response time was about 70ms. Under harmonic excitation, the frequency bandwidth was about 60Hz and the actuator performed a good tracking behavior with the excitation signal.

    参考文献
    相似文献
    引证文献
引用本文

何忠波,荣策,杨朝舒,薛光明,郑佳伟.柔性铰链放大的叠堆式超磁致伸缩致动器建模与实验[J].农业机械学报,2017,48(12):421-428, 247. HE Zhongbo, RONG Ce, YANG Zhaoshu, XUE Guangming, ZHENG Jiawei. Modeling and Experimental Analysis of Stack Giant Magnetostrictive Actuator Amplified by Flexure Hinge[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(12):421-428, 247

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-04-14
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-12-10
  • 出版日期: