基于流声耦合法的超低比转数离心泵空化特性研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(51509111、51779106)、江苏省产学研合作前瞻性联合研究项目(BY2016072-01)、过程装备与控制工程高校重点试验室开放基金项目(GK201403)和中国博士后科学基金项目(2015M581734、2017M611721)


Cavitation Characteristics of Ultra-low Specific Speed Centrifugal Pump Based on Fluid-Acoustic Coupling Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为研究离心泵不同空化状态下噪声特性的变化规律,以及空化的发展对水动力噪声的影响,首先以一台超低比转数离心泵为研究对象,搭建闭式试验台,基于泵产品测试系统及数据采集系统建立了离心泵空化噪声的试验测试系统,实现了泵性能参数和内场噪声信号的同步采集。其次,分别应用不同空化模型对模型泵空化性能曲线进行预测,并与试验值进行对比,选择合适的空化模型。在此基础上将整个空化过程划分为未空化阶段、空化初生阶段、特征空化阶段及严重空化阶段,结合声学边界元法将流场信息转化为声场信息,并通过比较各空化阶段噪声预测值与试验值相对误差,发现模拟信号与实际信号吻合度较高,充分验证了预测方法的可行性。最后,基于流声耦合法研究空化对内部声场的影响。研究发现:针对超低比转数离心泵空化,Zwart模型比Kunz模型具有更好的适用性。内场噪声信号随空化的发展变化规律比较复杂。在中低频段,由于空化对动静干涉的抑制作用,使得叶频及其倍频特征值离散分量声压级随空化的发展呈现逐渐下降趋势,而轴频分量呈现增大趋势;而高频宽频噪声随空化系数的降低呈现先缓慢减小、然后急剧上升的规律,逐渐将高频特征值分量淹没在宽频带中,高频段声压级的增高造成总声压级的升高。

    Abstract:

    Centrifugal pumps are widely used in various fields. The cavitation not only causes the destruction of over-current components so as to influence the reliability of operation, but also affects the pump running stability because of vibration noise. In many cases, cavitation is unavoidable. Therefore, it is necessary to improve the accuracy of cavitation monitoring and reduce the unnecessary loss caused by cavitation. The objective was to study the variation law of noise characteristics under different cavitation conditions of centrifugal pump, and the influence of cavitation development on hydrodynamic noise. The previous scholars used the test methods to get the noise signals, but the signals were not the same as different product characteristics of pumps. Therefore, it is a cost-effective method to predict the cavitation noise by numerical simulation. And the experimental method was used to verify the accuracy of numerical calculation. Firstly, an ultra-low specific speed centrifugal pump was used as the research object to build a closed test bench. Based on the pump product test system and data acquisition system, a test system of centrifugal pump cavitation noise and performance was established to realize pump performance parameters and internal field noise signals synchronization acquisition. The cavitation performance curves of the model pump were predicted by Kunz cavitation model and Zwart cavitation model respectively. And the experimental values were compared with to select the appropriate cavitation model. According to the vapor volume fraction distribution among blades and cavitation performance curve, the whole cavitation process was divided into noncavitation stage, nascent cavitation stage, feature cavitation stage and serious cavitation stage. The effects of cavitation on internal flow field and pressure at different times during pump operation were analyzed. The acoustic boundary element method was used to transform the flow field information into sound field information. The relative error of the noise prediction value and the experimental value of each cavitation stage was compared to verify the feasibility of the forecasting method. Because the analog signals show high degree of coincidence with the actual signals. Finally, the influence of cavitation on the internal sound field was studied based on the flow sound coupling method. The study showed that for the cavitation on ultra-low specific speed centrifugal pump, Zwart model had better applicability compared with Kunz model. The relative errors between the predicted value and the experimental value of the Zwart model were all within 5% in the non-cavitation stage, the feature cavitation stage and the serious cavitation stage. The cavitation deteriorated the flow regime in the flow channels, especially from the feature cavitation stage. The number of internal vortices was increased and pressure fluctuation was increased because of the vapor, which made the increase of instability. The variation of the inner field noise signal with cavitation was complicated. In the low to middle frequency range, the sound pressure level of the discrete component of blade passing frequency and its harmonic frequencies were gradually decreased with the development of cavitation, due to the inhibitory effect of cavitation on dynamic and static interference;while the axial frequency component showed an increasing trend. The sound pressure level in high frequency range was decreased firstly and then increased sharply with the decrease of the cavitation coefficient. The high frequency eigenvalue component was gradually submerged in the wide frequency band. The increase of the sound pressure level in the high frequency band caused the total sound pressure level risen. Compared with the experimental results, the relative error was less than 5% in the non-cavitation stage and nascent cavitation stage. In feature cavitation stage and serious cavitation stage, the degree of coincidence was slightly worse, and the relative error was less than 10%.

    参考文献
    相似文献
    引证文献
引用本文

王勇,赵宇琪,董亮,代翠,刘厚林,徐海良.基于流声耦合法的超低比转数离心泵空化特性研究[J].农业机械学报,2017,48(12):114-123.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-08-07
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-12-10
  • 出版日期: