基于空气流量预测的发动机空燃比三步非线性控制
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(61403159)和吉林省教育厅“十三五”科学研究规划项目(2016431)


AFR Triple-step Control of Gasoline Engine Based on Air Mass Flow Prediction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为降低排放并保证发动机的动力性,空燃比(Airfuel ratio, AFR)控制成为人们日益关注的焦点。空燃比的瞬态精确控制可同时兼顾扭矩输出和尾气排放。为达到瞬态空燃比的精确控制,提出了空燃比三步非线性控制方法,包含稳态控制、参考前馈控制和误差反馈控制。当空燃比期望值为恒值时,稳态控制起到主导作用;当车辆扭矩需求发生速变时,空燃比期望值也发生跳变,参考前馈控制此时将及时做出反应;误差反馈控制以废气氧传感器(EGO)测得的空燃比作为反馈量进行修正。考虑喷油器执行机构的延迟,基于模型实时预测未来进气歧管的压力,通过前馈控制进行延迟补偿。利用仿真平台en-DYNA中的四缸发动机模型进行仿真验证,证明算法瞬态工况和参考输入快变时的有效性。

    Abstract:

    Control of the air-fuel ratio (AFR) in gasoline engines is of imminent importance when aiming at minimizing calibration effort and meeting performance requirements. People have higher demands on the gasoline engine, which has less exhaust emission, better economic efficiency and favorable engine power performance. In order to keep the air-fuel ratio close to the stoichiometric value under transient conditions, AFR precise control was achieved by employing triple-step method which was easily to be implemented in engineering. The structure of the designed controller consisted of three parts: steady-state control, feed-forward control concerning the reference variations and error feedback control. When the desired AFR was a constant, the steady-state control would play a dominant role. And the feed-forward control would react immediately when the desired AFR was changed on account of the torque requirements changed. The feedback control would amendment AFR measured by the exhaust gas oxygen (EGO) sensor which can enhance the close-loop performance and rearranged into a state-dependent PI. A straightforward design process was provided, and the structure of the designed non-linear controller was easily achieved, which was comparable to those widely used in current automotive control. Furthermore, taking the implement delay of the injection into consideration, it can be compensated by feed-forward control based on predicting the intake manifold pressure. Finally, the simulation results in the environment of en-DYNA with a reasonable common fourcylinder engine model showed the efficiency of the proposed method. And the predicted intake manifold pressure was visibly advanced to that without prediction one in the simulation result.

    参考文献
    相似文献
    引证文献
引用本文

王萍,林佳眉,陈虹.基于空气流量预测的发动机空燃比三步非线性控制[J].农业机械学报,2017,48(11):398-404.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-06-21
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-11-10
  • 出版日期: