基于DoE分析的增压器涡轮叶形优化设计方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(51106114)和内燃机燃烧学国家重点实验室开放项目(K2016-04)


Optimization Design Method for Turbine Blades of Turbocharger Based on DoE Analysis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以提高增压器涡轮等熵效率为目标,提出使用基于试验设计(Design of experiment, DoE)的优化设计方法,进行涡轮叶片优化设计研究。对现有增压器涡轮选取合理的特征型线方案,建立了涡轮参数化模型;在现有增压器的基础上建立了计算流体力学(Computational fluid dynamics, CFD)仿真模型,并通过涡轮热吹试验台架验证了模型的可靠性;选取14个描述叶形的叶片截面控制参数作为设计变量,运用正交矩阵法对设计空间进行析因分析和仿真计算,根据计算结果选取了5个敏感度较高的控制参数,使用最优拉丁超立方方法建立了响应面近似模型;采用基于多岛遗传算法和序列二次规划算法的组合优化方法进行寻优计算。结果表明:优化后的涡轮流道中的涡旋强度降低,流场分布更加均匀,流动损失有所降低,等熵效率为74.04%,较原始涡轮提升2.16个百分点。

    Abstract:

    In order to seek for the effect factors on turbocharger efficiency, and explore effective methods to improve turbocharger performance, the turbine of a turbocharger was taken as the study object. The improvement of isentropic efficiency, which is a key parameter to evaluate the performance of a turbine, is treated as the main optimization target based on the design of experiment (DoE) method. The characteristic blade curve of turbine, which is a mathematical method to describe the shape of blade and includes 50 parameters, was reasonably selected and adjusted to fit the turbine. According to the original turbocharger, a computational fluid dynamics (CFD) model was established, and it was verified through a turbine hot gas experiment. The calculation values were in good agreement with the experiment values, and the maximum errors were 512% in mass flow rate and 2.18% in isentropic efficiency. 14 parameters describing turbine blade shape were selected out as design variables from the 50 controlling parameters of characteristic blade curves, and then the orthogonal matrix method was carried out on the design space. According to the results of simulation calculation, five parameters of high sensitivity were selected. Combined with CFD simulation, the optimal Latin hypercube design method was employed to acquire the distribution scheme of characteristic sample points and the simulation data within the sample space, through which a response surface approximation model was established accordingly. Based on the response surface approximation model, a kind of combinatorial optimization method combined with multiisland genetic algorithm (MIGA) and sequential quadratic programming (SQP) was employed in the process of optimization simulation calculation. The results of optimization simulation showed that the decreasing of the optimized circumferential bending degree of the turbine blade and the inclination angle of turbine blade at the entrance leaded to the decreasing of vortex intensity in the flow tunnel, therefore flow field distribution was more uniform and the flow losses was reduced. The isentropic efficiency of the turbine was 74.04%, which enhanced by 2.16 percentage points compared with the original turbine. This study can improve the design efficiency of the turbocharger and could be a reference for the design and optimization method of turbocharger turbine blade shape to some extent.

    参考文献
    相似文献
    引证文献
引用本文

倪计民,刘 越,石秀勇,高旭南,李佳琪,魏亚男.基于DoE分析的增压器涡轮叶形优化设计方法[J].农业机械学报,2016,47(7):361-367.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-03-23
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-07-10
  • 出版日期: 2016-07-10