基于LAI和VTCI及粒子滤波同化算法的冬小麦单产估测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(41371390)


Winter Wheat Yield Estimation Based on Particle Filter Assimilation Algorithm and Remotely Sensed LAI and VTCI
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为进一步提高冬小麦单产的估测精度和验证粒子滤波算法在同化研究中的适用性,以陕西省关中平原为研究区域,以叶面积指数(LAI)和条件植被温度指数(VTCI)为同化系统的状态变量,采用重采样粒子滤波算法同化CERES—Wheat模型模拟的与遥感数据反演的LAI和VTCI,并依据在不同类型样点应用最优同化LAI和VTCI构建的单产组合估测模型对2008—2014年冬小麦单产进行估测。结果表明,同化LAI具有良好的时间和空间连续性,可减缓CERES—Wheat模型模拟LAI的剧烈变化,其峰值出现时间与遥感LAI变化趋势基本同步,更加符合关中平原冬小麦实际变化情况;同化VTCI能同时表达模型模拟值和遥感观测值的变化趋势,且更能反映冬小麦对水分胁迫的敏感性。比较不同类型样点基于不同同化变量建立的估产模型,发现在旱作样点,同时同化VTCI和LAI的单产估测结果(R2=0.531)优于单独同化VTCI(R2=0.475)或LAI(R2=0.428)的估测结果,且同时同化VTCI和LAI与实测产量间相关性达极显著水平(P<0.001);而在灌溉样点单独同化LAI的估测结果精度最高(R2=0.539),同时同化VTCI和LAI的估测结果次之(R2=0.457),单独同化VTCI的估测结果较差(R2=0.243)。表明在旱作样点,冬小麦叶面积指数和水分胁迫是影响其产量形成的主要因子,而在灌溉样点,叶面积指数是影响冬小麦产量形成的主要因子。

    Abstract:

    Data assimilation (DA) provides a way for effective combination of model simulation and observation, and improves accuracy of winter wheat yield estimation. Among various DA methods, the particle filter (PF) is not constrained by the conditions of linear models and Gaussian error distribution, and receives more attention and application of DA. Currently, most researchers adopt single remotely sensed data source and single variable assimilation strategy, which cannot accurately reflect the interactive process among radiation, temperature and water, and limit the performance of data assimilation systems. To improve accuracy of winter wheat yield estimation, a particle filter algorithm was proposed, which was based on a sequential important sampling procedure of assimilating leaf area index (LAI) and vegetation temperature condition index (VTCI) retrieved from MODIS data into the CERES—Wheat model (Crop environment resource synthesis for wheat) to estimate winter wheat yield from 2008 to 2014 in Guanzhong Plain, Shaanxi, China. In order to determine effects of the assimilated variables on winter wheat yield estimation under different management practices, eight typical rainfed farming sites and four irrigation sites were selected, and the assimilated LAI or VTCI or both of them were used to establish winter wheat yield estimation models. The results showed that the assimilated LAI had good temporal and spatial continuity, and the sharp changing points of seasonal LAI were decreased after applying the particle filter assimilation algorithm. The peak and seasonal trend of the assimilated LAI were basically in agreements with those of the remotely sensed LAI, and the problem of low values of MODIS—LAI was solved to a certain degree after assimilation. The seasonal change of assimilated VTCI was in good agreement with those of both the remotely sensed VTCI and the simulated VTCI, and the assimilated VTCI was a good index for indicating crop water stress of winter wheat. These results suggested that the assimilation of LAI and VTCI might be preferable when the study areas were vulnerable to water stress. At the rainfed farming sites, the determination coefficient of the yield estimation model with assimilated LAI and VTCI was the highest as 0.531 (P<0.001), and the determination coefficients of the yield estimation models with assimilated LAI or VTCI were 0.428 and 0.475, respectively, which were both at the significance level of P<0.001. However, at the irrigation sites the determination coefficient of the yield estimation model with assimilated LAI was the highest as 0.539 (P<0.001), the coefficient of the yield estimation model with assimilated LAI and VTCI was 0.457 (P<0.01), and the coefficient of the yield estimation model with assimilated VTCI was the lowest as 0.243 (P<0.10). In conclusion, the LAI and crop water stress were the important factors that affected winter wheat yield in rainfed farming areas, while the LAI became the important factor in irrigation areas. The study could provide a reference for crop yield estimation by using data assimilation algorithms which combined multi-source remotely sensed variables with crop growth model.

    参考文献
    相似文献
    引证文献
引用本文

王鹏新,孙辉涛,解毅,王蕾,张树誉,李俐.基于LAI和VTCI及粒子滤波同化算法的冬小麦单产估测[J].农业机械学报,2016,47(4):248-256. Wang Pengxin, Sun Huitao, Xie Yi, Wang Lei, Zhang Shuyu, Li Li. Winter Wheat Yield Estimation Based on Particle Filter Assimilation Algorithm and Remotely Sensed LAI and VTCI[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(4):248-256

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-10-08
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-04-10
  • 出版日期: 2016-04-10