刘继展,徐秀琼,李萍萍.果实采摘中果梗激光切割分析与实验[J].农业机械学报,2014,45(1):59-64.
Liu Jizhan,Xu Xiuqiong,Li Pingping.Analysis and Experiment on Laser Cutting of Fruit Peduncles[J].Transactions of the Chinese Society for Agricultural Machinery,2014,45(1):59-64.
摘要点击次数: 3827
全文下载次数: 2053
果实采摘中果梗激光切割分析与实验   [下载全文]
Analysis and Experiment on Laser Cutting of Fruit Peduncles   [Download Pdf][in English]
投稿时间:2013-01-16  
DOI:10.6041/j.issn.1000-1298.2014.01.010
中文关键词:  黄瓜 果梗 采摘机器人 激光切割
基金项目:国家自然科学基金资助项目(50905076)和江苏高校优势学科建设工程资助项目
作者单位
刘继展 江苏大学 
徐秀琼 江苏大学 
李萍萍 南京林业大学 
中文摘要:为探讨机器人果实采摘中应用激光进行果梗切断的可行性,以黄瓜果梗为对象,利用基于30W光纤耦合半导体激光器构建的果梗切割实验平台,分别进行了激光穿透时间与果梗直径、激光束功率、离焦量、入射角的关系实验和果梗激光切割速度实验。实验发现,激光焦斑热功率密度0.75W/mm2即可实现果梗的穿透和切割,且对果梗直径变化、焦斑定位与入射角度误差具有良好的适应性。但半导体激光器在垂直照射、零离焦量、光输出功率14.94W条件下的最短切割时间达到23.73~28.13s,应通过选择更高光束质量的光纤激光器等实现快速气化切割以满足实际作业的需要。
Liu Jizhan  Xu Xiuqiong  Li Pingping
Jiangsu University;Jiangsu University;Nanjing Forestry University
Key Words:Cucumber Peduncle Harvesting robot Laser cutting
Abstract:With the aim to verify the feasibility of cutting peduncles with laser beam in harvesting robot, several laser drilling and cutting experiments of cucumber peduncles were conducted with a 30W fiber-coupled semiconductor laser in view of different factors. It was found that the laser focusing spot with heat power density of only 0.75W/mm2 could drill through a cucumber peduncle, and a successful drilling could be achieved even if diameter of peduncles, defocusing distance, or incident angle of laser beam changed within a large range. However, 23.73~28.13s was necessary to cut a cucumber peduncle when pointing a 14.94W semiconductor laser beam vertically without any defocus at the peduncle surface. It is not an ideal vaporizing but a burning process to cut peduncles attributed to the much worse beam quality of semiconductor laser, and it is believed that a Nd:YAG or fiber laser can achieve high speed cutting of peduncles, which can supply 102~103 times higher heat power density of focusing spot.

Transactions of the Chinese Society for Agriculture Machinery (CSAM), in charged of China Association for Science and Technology (CAST), sponsored by CSAM and Chinese Academy of Agricultural Mechanization Science(CAAMS), started publication in 1957. It is the earliest interdisciplinary journal in Chinese which combines agricultural and engineering. It always closely grasps the development direction of agriculture engineering disciplines and the published papers represent the highest academic level of agriculture engineering in China. Currently, nearly 8,000 papers have been already published. There are around 3,000 papers contributed to the journal each year, but only around 600 of them will be accepted. Transactions of CSAM focuses on a wide range of agricultural machinery, irrigation, electronics, robotics, agro-products engineering, biological energy, agricultural structures and environment and more. Subjects in Transactions of the CSAM have been embodied by many internationally well-known index systems, such as: EI Compendex, CA, CSA, etc.

   下载PDF阅读器