张德胜,张磊,施卫东,陈斌,张华.基于流固耦合的离心泵蜗壳振动特性优化[J].农业机械学报,2013,44(9):40-45.
Zhang Desheng,Zhang Lei,Shi Weidong,Chen Bin,Zhang Hua.Optimization of Vibration Characteristics for Centrifugal Pump Volute Based on Fluid-structure Interaction[J].Transactions of the Chinese Society for Agricultural Machinery,2013,44(9):40-45.
摘要点击次数: 3903
全文下载次数: 1644
基于流固耦合的离心泵蜗壳振动特性优化   [下载全文]
Optimization of Vibration Characteristics for Centrifugal Pump Volute Based on Fluid-structure Interaction   [Download Pdf][in English]
  
DOI:10.6041/j.issn.1000-1298.2013.09.008
中文关键词:  离心泵  蜗壳  流固耦合  振动特性  优化设计
基金项目:“十二五”国家科技支撑计划资助项目(2012BAB17B02—4、2011BAF14B01);江苏省自然科学基金资助项目(BK2011503);中国博士后基金面上和特别资助项目(2011M500117、2012T50468);江苏大学高级人才启动基金资助项目(11JDG038);江苏高校优势学科建设工程资助项目
作者单位
张德胜 江苏大学 
张磊 江苏大学 
施卫东 江苏大学 
陈斌 江苏大学 
张华 江苏大学 
中文摘要:针对具有超厚叶片的离心泵叶轮与蜗壳匹配问题,采用双向耦合方法对3种蜗壳结构产生的振动位移和振动速度进行了数值模拟。计算结果表明,由于叶轮与隔舌之间的流场动静干涉作用,蜗壳受到交替的激振力作用,在不同时刻振动位移和振动速度分布呈周期性变化;蜗壳基圆直径与叶轮直径的比值D3/D2对蜗壳振动有明显的影响,当D3/D2≤1.013时,超厚叶片出口压力诱导蜗壳振动强烈;当D3/D2逐渐增大时,蜗壳振动明显减弱。在设计工况下,方案A(D3/D2=1.013)振动位移最大值为4.288×10-6m,振动速度最大值为8.547×10-4m/s;方案C(D3/D2=1.19)振动位移最大值为2.923×10-6m,振动速度最大值为5.253×10-4m/s;优选方案B(D3/D2=1.13)的振动最小,其位移和速度最大值分别为2.56×10-6m和4.823×10-4m/s,仅约为方案A的60%。该结果也验证了径向力的作用规律与蜗壳振动特性的直接关联性。
Zhang Desheng  Zhang Lei  Shi Weidong  Chen Bin  Zhang Hua
Jiangsu University;Jiangsu University;Jiangsu University;Jiangsu University;Jiangsu University
Key Words:Centrifugal pump  Volute  Fluid-structure interaction  Vibration characteristics  Optimal design
Abstract:In order to optimize the matching of impeller with extra-thick blades and volute in centrifugal pump, the structure displacement and velocity of different volutes were simulated by two-way coupling fluid-structure interaction method. The numerical results showed that volute was influenced by alternately exciting force due to the flow field interaction between the impeller and the tongue, and vibration displacement and vibration velocity distribution changed cyclically at different time steps. The ratio of volute base circle diameter and impeller diameter D3/D2 had a significant impact on volute vibration. When D3/D2 was less than 1.013, the un-uniform velocity distribution induced by jet-wake in blade outlet leaded to the strong pressure pulsation and vibration of volute. However, the peak-to-peak value of the pressure pulsation was reduced and the vibration of the volute was weakened when the ratio D3/D2 gradually increased. In the design conditions, maximum vibration displacement in case A (D3/D2=1.013) was 4.288×10-6m, and the maximum vibration speed was 8.547×10-4m/s. In case C (D3/D2=1.19) was 2.923×10-6m and 5.253×10-4m/s respectively. The optimized case B (D3/D2=1.13) had the minimal vibration with the maximum displacement of 2.56×10-6m and the maximum vibration speed value of 4.823×10-4m/s. The results also demonstrated the direct relevance between the radial force law and volute vibration characteristics in centrifugal pump.

Transactions of the Chinese Society for Agriculture Machinery (CSAM), in charged of China Association for Science and Technology (CAST), sponsored by CSAM and Chinese Academy of Agricultural Mechanization Science(CAAMS), started publication in 1957. It is the earliest interdisciplinary journal in Chinese which combines agricultural and engineering. It always closely grasps the development direction of agriculture engineering disciplines and the published papers represent the highest academic level of agriculture engineering in China. Currently, nearly 8,000 papers have been already published. There are around 3,000 papers contributed to the journal each year, but only around 600 of them will be accepted. Transactions of CSAM focuses on a wide range of agricultural machinery, irrigation, electronics, robotics, agro-products engineering, biological energy, agricultural structures and environment and more. Subjects in Transactions of the CSAM have been embodied by many internationally well-known index systems, such as: EI Compendex, CA, CSA, etc.

   下载PDF阅读器