基于无人机高光谱长势指标的冬小麦长势监测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(41601346、41871333)


Monitoring of Winter Wheat Growth Based on UAV Hyperspectral Growth Index
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为快速准确监测作物长势,以冬小麦为研究对象,获取了不同生育期的无人机高光谱影像。利用无人机高光谱数据构建光谱指数,并分析4个生育期的指数与生物量、叶面积指数以及由生物量和叶面积2个生理参数构建的长势监测指标(Growth monitoring indicator,GMI)的相关性;建立与GMI相关性较强的4个光谱指数的单指数回归模型,利用多元线性回归、偏最小二乘和随机森林3种机器学习方法分别建立冬小麦各生育期的GMI反演模型;将最佳模型应用于无人机高光谱影像,得到冬小麦长势监测图。结果表明:各生育期光谱指数与冬小麦GMI相关性较高,大部分指数都达到了显著水平,其中NDVI、SR、MSR和NDVI×SR与GMI的相关性高于生物量、叶面积指数与GMI的相关性;拔节期、挑旗期、开花期、灌浆期、全生育期,表现最好的回归模型对应光谱指数分别是NDVI×SR、NDVI、SR、NDVI和NDVI×SR;对比3种方法构建的GMI反演模型,开花期模型MLR-GMI效果最佳,此时期的模型建模R2、RMSE和NRMSE分别是0.7164、0.0963、15.90%。

    Abstract:

    In order to quickly and accurately monitor crop growth, winter wheat was used as research object, and UAV hyperspectral images of different growth stages were acquired. Firstly, the hyperspectral data of UAV were used to construct the spectral index, and the indices of four growth stages were analyzed respectively, which were related to the biomass, leaf area index and the new growth monitoring indicator (GMI) constructed by the two physiological parameters of biomass and leaf area, and then a single exponential regression model was established with four spectral indices that were strongly correlated with GMI, and GMI inversion models of winter wheat growth stages were established by using three machine learning methods: multiple linear regression, partial least square and random forest. Finally, the best model was applied to the UAV hyperspectral image to obtain the growth monitoring map. The results showed that the correlation between the spectral index and GMI of winter wheat was high, and most of the indices reached significant levels. The correlation between NDVI, SR, MSR and NDVI×SR and GMI was higher than that of biomass, leaf area index and GMI. The regression model established by the single spectral index of each growth stage, the best performing model corresponding to the spectral indices were NDVI×SR, NDVI, SR, NDVI and NDVI×SR; compared with GMI inversion model constructed by three methods, the flowering stage model MLR-GMI had the best effect. The model modeling R2, RMSE and NRMSE of this stage were 07164, 00963 and 1590%, respectively.

    参考文献
    相似文献
    引证文献
引用本文

陶惠林,徐良骥,冯海宽,杨贵军,苗梦珂,林博文.基于无人机高光谱长势指标的冬小麦长势监测[J].农业机械学报,2020,51(2):180-191. TAO Huilin, XU Liangji, FENG Haikuan, YANG Guijun, MIAO Mengke, LIN Bowen. Monitoring of Winter Wheat Growth Based on UAV Hyperspectral Growth Index[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(2):180-191.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-11-16
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-02-10
  • 出版日期: